Welcome

Shelley Row, P.E., PTOE
Director
ITS Joint Program Office
Shelley.Row@dot.gov

WWW.PCB.ITS.DOT.GOV
A101
Introduction to Acquiring Standards-based ITS Systems
Target Audience

- Procurement managers
- Procurement decision makers
- Project managers
Instructor

Ken Vaughn, P.E.
President
Trevilon Corporation
Herndon, VA, USA
Recommended Prerequisites

- I101: Using ITS Standards: An Overview
- Helpful to have knowledge of
 - Intelligent Transportation Systems (ITS)
 - Managing ITS deployment projects
 - Government procurement processes
 - Benefits of standards
 - Systems engineering process (SEP)
Curriculum Path (SEP)

I101
Using ITS Standards: An Overview

A101
Introduction to Acquiring Standards-based ITS Systems

A102
Introduction to User Needs Identification

A201
Details on Acquiring Standards-based ITS Systems

Understanding User Needs
A311a NTCIP 1203
A313a NTCIP 1204 v03
A321a TMDD v3.0

Specifying Requirements
A311b NTCIP 1203
A313b NTCIP 1204 v03
A321b TMDD v3.0
Curriculum Path (Non-SEP)

I101 Using ITS Standards: An Overview

A101 Introduction to Acquiring Standards-based ITS Systems

A102 Introduction to User Needs Identification

A103 Introduction to ITS Standards Requirements Development

A201 Details on Acquiring Standards-based ITS Systems

A202 Identifying and Writing User Needs When ITS Standards Do Not Have SEP Content

A203 Writing Requirements When ITS Standards Do Not Have SEP Content

*A3xxa Identifying and Writing Specific User Needs for NTCIP 12xx vxx

*A3xxb Developing and Writing Specific Requirements for NTCIP 12xx vxx

*expected in Year 2 training modules

[NTCIP Training Logo]
Learning Objectives

1. Identify what managers should know
2. Articulate process for acquiring standards-compliant ITS systems
3. Differentiate between standards with and without SEP
ACTIVITY
Discuss

- What do you think of when someone mentions “ITS Standards”?
- Use the chat pod to answer
Types of ITS Standards

- Data Standards
 - Define domain-specific information
 - DMS, ESS, TMDD, etc.
- Communication Standards
 - Define low-level communications
 - TCP/IP, Ethernet, serial, etc. in ITS environment
- Both must be defined for a system interface
Additional Key Terms

- Management system
- Device
Multiple Choice Poll

- How do ITS standards assist in procurements?
 - They define all requirements
 - They define details, but need tailoring
 - Communication standards are precise, but data standards need to be tailored
 - Data standards define precise requirements, but communication standards need to be tailored
Benefits of ITS Standards

- Standards define technical details, but need tailoring
 - Standard provides a checklist of features to consider
 - Optional features (e.g., display of graphics)
 - Desired ranges (e.g., number of messages)
Other Benefits of ITS Standards

- **Management Benefits**
 - Addressed in Module I101

- **Acquisition Benefits**
 - Price competition among product vendors
 - Easier to switch from one vendor to another
 - Reduced integration costs for central system
 - Market synergies
 - Off-the-shelf testing tools
Discussion

- How do we determine the appropriate tailoring?
- Use the chat pod to answer
Systems Engineering Process (SEP)
Benefits of SEP

- Helps define scope
 - Higher level of stakeholder participation
 - More likely that system meets user expectations
 - Better system documentation
- Reduced risk of cost and schedule overruns
 - Fewer defects in accepted product
 - More predictable outcomes
ACTIVITY
Discuss Roles

- Who are the key players that are involved in a typical systems procurement?

- Use the chat pod to answer
Roles

- Identify key players of the systems engineering process
 - System owner
 - Systems engineering assistant
 - Development team
Interaction Among Team

- Communication is critical
 - All three roles have distinct perspectives and skills
 - Each role provides value to the project
 - Issues should be identified and discussed early
Multiple Choice

- Where do the standards fit into the SEP “V” diagram?
 - At the top of the “V”
 - Concept of Operations, System Requirements, and High-Level Design
 - High-Level Design and Detailed Design
 - ITS standards address issues outside of the “V” diagram
ITS Standards and the SEP

Learning Objective #2
Standards With SEP Content

- Define subsystem user needs
 - E.g., manage fonts for a message sign
- Define subsystem requirements
 - E.g., determine number of fonts
 - Traced to user needs
- Trace each requirement to a single design
Standards Without SEP Content

- Earlier ITS standards only document design
 - Content was derived by perceived needs
 - Context has to be inferred by user
 - Missing components need to be defined by user
 - User needs
 - Requirements
 - Some design details
 - Must map user requirements to remaining details
POLLING
Multiple Choice

- How rigid are subsystem requirements?
- What type of contract do you use to acquire this subsystem?
 - Requirements are known, use fixed price
 - Requirements will be revised, use cost-plus
 - It depends
Combining SEP and Procurement

- Devices are largely off-the-shelf
 - Requirements are well-known
- Management systems often require software development
 - Requirements are refined during project life
- Different scope requires
 - different procurement vehicle
 - different interface within the SEP
Typical Scope of Device Vendor
Typical Scope of System Integrator
ITS Standards

- Reduce work
 - Simplifies project specification
 - Allows reuse of design and implementation
 - Facilitates testing
- Reduce risk
- Reduce schedule
Four Procurement Scenarios

- Device procurement
 - Standard with SEP content
 - Standard without SEP content
- Management system procurement
 - Standard with SEP content
 - Standard without SEP content
Preparatory Steps

- Define system concept of operations
 - Inform public about current traffic-related events
- Define system requirements
 - System shall allow the user to define the message to convey to the public, which will automatically expire when the event ends
Preparatory Steps

- Define major subsystems
 - Management system
 - Message signs
- Define communications environment
- Identify services needed from external subsystems
Device: Standard With SEP Content

- Select services from defined user needs
 - Define a message
 - Activate and display a message
- Select subsystem requirements from standard
 - Support multi-page messages
- Mapping to design elements is standardized
Device: Standard Without SEP Content

- Define needed services
- Define subsystem requirements
- Map to standardized design elements
 - Define missing design elements (e.g., dialogs)
Management System: Standard With SEP Content

- Standard with SEP Content
 - Select user needs from standard
 - Select requirements from standard
 - Define scenarios when data exchange is required
When Do We Document Need for Standardized Features?

Constantly harmonize all system documentation
Management System: Standard Without SEP Content

- Standard Without SEP Content
 - Define detailed requirements for each exchange
 - Map exchanges to design details and enhance
 - Dialog
 - Messages
 - Data Elements
 - Define scenarios when data exchange is required
Management System: Real-World

- Most management systems will control multiple types of devices
 - Some based on standards with SEP content
 - Some based on standards without SEP content
 - Some not based on standards
- All projects should follow SEP
 - The SEP content within standards merely simplify this work
Follow-on Steps

- Select communication stacks and standards
- Define other requirements (e.g., hardware)
- Procure
- Implement
- Test
Testing with SEP

- Standards with SEP Content
 - Standardized test procedures (ESS and soon for DMS)
 - Facilitates testing and testing market
 - Others have reusable test procedures in industry
 - Requirements are standardized and stable
 - Once a test procedure is written for one deployment, it can be reused repeatedly

- Standards without SEP Content
 - Test development effort is more involved since tests must be based on system requirements
Testing the Final Product

- Testing is critical step
 - Verify subsystems meet standardized interface
 - Verify system integrates all components together
 - Validate system meets user needs
- Document all testing
 - Allows reproducible results
 - Documents what was done
- Budget and schedule for multiple rounds
 - Allows for problems identified during initial tests
Practical Impacts

- What are your concerns about applying the Systems Engineering Process, as we have described, to acquire standards-based ITS systems?

- Use the chat pod to answer
Practical Impacts

 How large is the resulting specification?
 – Specifications should be as detailed as necessary
 Is a feature important? If yes,
 – Identify in concept of operations
 – Define in requirements
 – Verify in a test procedure
 – Validate that it meets user needs
 – Budget for the effort
Understanding Cost Implications

- SEP requires
 - Time
 - Experienced personnel
 - Commitment
- Proven to lower risks and increase quality
- Requires investment
Benefits of SEP

SEP Benefits vs. Type of Acquisition

- SEP reduces risks
- Even acquiring a DMS entails risks
- Risks are higher for standards without SEP content
- Risks are higher for custom development (e.g., central systems)
- Risks are higher when dealing with multiple standards (e.g., central systems)
Today’s Objectives

- Identified key concepts that managers should know
- Described process for acquiring standards compliant ITS systems
- Differentiated between standards with and without SEP
What Did We Learn Today?

1) All projects should follow the Systems Engineering Process.

2) The SEP assists in defining the Scope for a project and in meeting the project Budget and Schedule.

3) ITS Standards with SEP content reduce Systems Engineering effort on a project.

4) ITS Standards without SEP content still Assist in projects using the SEP.

5) All requirements should be fully Tested prior to acceptance.
Where to Learn More

- Module supplement
 - NTCIP Guide
 - TMDD Guide
 - IEEE 1512 Guide
 - Systems Engineering Guidebook for ITS
- Other ITS courses
 - A102: Next module for all standard curriculum paths
 - A201: Follows A102 for all paths
 - T101: For more information on testing