T317: Applying Your
Test Plan to NTCIP 1205
Standard

Table of Contents

Module Description
Introduction/Purpose
Reference to Other Standards
Case Studies
Samples/Examples

Glossary

References

Study Questions

Module Description

This module is the last module of the NTCIP curriculum path for Closed Circuit Television (CCTV)
Camera Control without following the System Engineering Process (SEP). The prerequisites of this
module are A317a: Understanding User Needs for CCTV Systems Based on NTCIP 1205 Standard and
A317b: Understanding Requirements for CCTV Systems Based on NTCIP 1205 Standard:

This module includes information in relation to the object definitions and conformance groups of the
NTCIP 1205 standard. However, unlike other NTCIP standards such as NTCIP 1203 and 1204, the
NTCIP 1205 standard was developed without following the System Engineering Process. Therefore,
the standard does not contain the information that is necessary for developing test plans and test
documents as required for testing CCTV camera control functions. The following information is not
included in NTCIP 1205, but is necessary for developing the CCTV test plans and test documents.

e User Needs

e Requirements

e Dialogs

e Protocol Requirements List (PRL)

e Requirements Traceability Matrix (RTM)

1. Introduction/Purpose

The purpose of this module is to assist the user and agencies in developing test plans and test
documents specific to their CCTV needs based on for NTCIP 1205 — Object Definitions for Closed
Circuit Television (CCTV) Camera Control. Revision Amendment 1 to NTCIP 1205 (November 2004) is
used to develop this module.

This module covers test materials related to elements of the NTCIP 1205 Standard required to
develop test plans to verify that an agency’s CCTV product or system meets design specifications and
other requirements of the NTCIP 1205 CCTV Standard while following standard testing approaches
and methodologies as suggested in the IEEE 829 standard.

2. Reference to Other Standards

Significant revisions were made between the 2008 version and 1998 version of IEEE 829 although
the main principles are the same. These revisions help clarify the test processes that are not
explicitly described in the 1998 version. The NTCIP 8007 standard refers to the 1998 version. In
order to avoid the confusion between NTCIP and IEEE 829-2008, this document further explains the

T317 : Applying Your Test Plan to NTCIP 1205 Standard

difference between IEEE 829-2008, IEEE 829-1998, and NTCIP 8007, and how to use them in
developing test plans and test documents.

2.1. Difference between IEEE 829-1998 and IEEE 819-2008

One of the major revisions in IEEE 829-2008 is to change from being document-focused to being
process-focused. New concepts are also introduced by IEEE 829-2008 by adding the descriptions of
integrity levels, master test plan, level test plan, and additional test documentation.

2.1.1. Integrity Levels
The following is excerpted from IEEE 829-2008 with regards to integrity levels.

4. Software and system integrity levels

In addition to a similar role in all other life cyele processes, a scheme of integrity levels provides the
structured means for setting the breadth and depth of testing. A high integrity level requires additional test
tasks than does a low integrity level. A high integrity level requires testing that is more in-depth than does a
low integrity level. Without a requirement for a certain integrity level, the tester will not know which
functions, requirements, or products require only a cursory effort and which require an intense effort.

This standard uses integrity levels to determine the testing tasks to be performed. Integrity levels may be
applied to requirements, functions, groups of functions, components, and subsystems. Some of these may
not require the assignment of an integrity level because their failure would impart no negative consequence
on the intended system operation. The integrity scheme may be based on functionality, performance,
securily, or some other system or software characteristic,

Whether an integrity level scheme i1s mandatory 1s dependent on the needs of the stakeholders for the
system. The user may follow the four-level schema provided as an example in this standard or may use a
different schema. However, il a different schema is used, a mapping should be made between the user’s
schema and the example. Some software elements and components may not require the assignment of an
integrity level {i.e., not applicable) because the failure would impart no consequences on the intended
systemn operations. The user may want to add a Level 0 to Table 1. Level 0 would cover failures that would
cause no consequences or are not applicable.

There shall be a documented definition of the integrity levels or the decision to not use an integrity level
scheme, The integrity level (or the decision to not use an integrity level scheme) shall be assigned as a
result of agreements among all specified parties [or their designated representative(s)]. such as the acquirer,
supplier, developer, and independent assurance authorities (e.g., a regulatory body or responsible agency).

T317: Applying Your Test Plan to NTCIP 1205 Standard

4.1 Integrity levels

An integrity level is an indication of the relative importance of software (or of a software characteristic,
component, or test level) to its stakcholders, as established by a set of sclected attributes such as
complexity, risk assessment, safety level, security level, data integrity, desired performance, reliability,
quality, cost, size, and/or other unique characteristics of the software. The characteristics used to determine
the integrity level vary depending on the system’s intended application and use. The set of characteristics
selected as important to stakeholders, together with its arrangement into discrete levels of performance or
compliance, constitutes an integrity level scheme. An organization may have an integrity level scheme that
is applicable for all projects; in which case, a project can simply reference the level in that scheme that is
applicable to this system.

Unique identifiers (such as integer numbers) denote individual integrity levels within an integrity level
scheme. Implicitly or explicitly, software with a relatively “higher” integrity level will require more testing
effort, and more test documentation. than software with a relatively “lower” integrity level. The
characteristics selected for inclusion in an integrity level scheme, and the number of integrity levels
provided, will vary depending on the stakeholders™ needs and the software’s intended application and use,
An assigned integrity level may change as the system evolves. Design, coding, procedural, and technology
features implemented by the development organization may raise or lower the assigned integrity level,

This standard uses the concept of integrity levels to determine the recommended minimum testing tasks lo
be performed, The inputs and outputs of the indicated testing tasks identify the test documentation needed,
High integrity software requires a larger set of test processes, a more rigorous application of testing tasks,
and as a result, more test documentation. Integrity levels can be assigned to soflware requirements,
functions, groups of functions, software components, subsystems, systems, or groups of systems (e.g, a
product ling), The test processes and resultant fest documentation should be tailored to specific system
requirements and applications through the selection of an integrity level (with its corresponding minimum
testing tasks and addition of optional testing tasks). The addition of optional testing tasks allows the test
effort to include application-specific characteristics of the software,

This standard provides as an example the four-level software integrity level scheme shown below. The
categories of the software integrity level scheme shown below are defined based on the seriousness of the

conseguence(s) (of incorrect behavior during execution) and on the potential for mitigation (taking steps to
lessen risk by lowering the probability of a risk event’s occurrence or reducing s effect should it oceur).

Each level may have an associated descriptive word, e.g.:
Level 4—Catastrophic
Level 3—Critical
Level 2—Marginal

Level 1—Negligible

Table 1— Consequence-based integrity level scheme

Description Level

Software must execute correctly or grave consequences (loss of life, loss of system, environmental 4
damage, economic or social loss) will occur, No mitigation is possible

Software must execute correctly or the infended use (mission) of system/sottware will not be realized 3
causing serious consequences {permanent injury., major system degradation, environmental damage,
economic or social impact). Partial-to-complete mitigation is possible.

Software must execule correctly or an intended function will not be realized causing minor 2

consequences. Compleie mitigation possible.

Software must execute commectly or intended function will not be realized causing negligible
consequences. Milization nol required.

Note that IEEE 829-2008 does not mandate the use of the integrity level schemes. The user or
agency may use the integrity level scheme provided in the standard, or develop another scheme by
itself, or not use any integrity level scheme at all (choose test documentation based on another
criteria). The use of an integrity level scheme is a recommended best practice that facilitates the
selection of the most appropriate activities and tasks and, as a result, the needed test
documentation.

The degree of intensity and rigor in performing and documenting the task are commensurate with
the integrity level. As the integrity level decreases, so does the required scope, intensity, and degree
of rigor associated with the testing tasks and documentation.

IEEE 829-2008 recommends using the minimum testing tasks that are to be performed for each
integrity level. To identify the minimum testing tasks that apply to a different selected integrity level
scheme, the users may map the integrity level scheme and associated minimum testing tasks to their
selected integrity level scheme. The mapping of the integrity level scheme and the associated
minimum testing tasks are documented in the Master Test Plan (MTP) or the highest Level Test Plan
(LTP) if there is no MTP (or the highest level document selected if there is no LTP).

Below is an example provided in IEEE 829 on how to map test documentation to integrity levels.

Integrity level | Example test documentation

4 Catastrophic | Master Test Plan

Level Test Plan (Component, Component Integration, Sysiem, Acceplance]

Level Test Design (Component, Component Integration, System, Acceplance)

Level Test Case (Component, Component Integration, System, Acceptance)

Level Test Procedure {Component, Component Integration, Svstem, Acceplance)

Level Test Log (Component, Component Integration, System, Acceplance)

Anomaly Beport

Level Interim Test Status Report {Component, Component Integration, Sysiem, Acceplance)

Level Test Report {Component, Component Intesration, System, Acceptance)

Master Test Report

3 Critical Master Test Plan

Level Test Plan (Component, Component Integration, System, Acceplance)

Level Test Design { Component, Component Integration, Sysiem, Acceplance)

Level Test Case (Component, Component Integration, System, Acceplance)

Level Test Procedurs {Component, Component Integration, Svstem, Acceptance)

Level Test Log (Component, Component Integration, System, Acceplance)

Anomaly Beport

Level Interim Test Status Beport (Component, Component Integration. Syatem, Acceplance)

Level Test Report { Component, Component Integration, Svstem, Acceptance)

Master Test Report

2 Marginal Level Test Plan { Component, Component Integration, System, Acceptance)

Level Test Design (Component, Component Integration, System, Acceptance)

Level Tests Case (Component, Component Integration, System, Acceplance)

Level Test Procedure {Component, Component Integration, Svstem, Acceplance)

Level Test Log (Component, Component Integration, System, Acceplance)

Anomaly Beport

Level Interim Test Status Report (Component, Component Integration, System, Acceplance)

Level Test Report {Component, Component Integration, Svstem, Acceplance)

1 Meplizible Level Test Plan (Component Integration, Sysiem)

Level Test Design (Component Integration, Sysiem)

Level Test Case (Component Integration, System)

Level Test Procedure {Component Integration, Svstem,)

Level Test Log (Component Integration, System)

Anomaly Report (Component Integration, System)

Level Test Report {Component [ntegration, System)

For the purpose of ITS testing, it is recommended to agencies considering using the integrity levels to
select proper test documents.

T317 : Applying Your Test Plan to NTCIP 1205 Standard | 7

2.1.2. Test Processes
The following is excerpted from IEEE 829-2008 with regards to test processes.

5. Test processes

This standard follows the structure defined in IEEE/ETA Sid 12207.0-1996 [B21] for describing processes
as shown in Figure 3. Each process has one or more supporting activities that are in turn executed by one or
more tasks. This is a top-down method for determining which tasks are required. Onee cach task has been
identified, its needed inputs and resuliant outpuis can be identified. In the case of this standard, the mpuis
and outputs determine which test documentation are needed.

Process
Activity 1 Activity 2 Activity n
- Task 1 - Task 1 - Task 1
- Task 2 = Task 2 - Task 2
- Task 3 - Task 3 = Task 3

Figure 3—IEEE/EIA Std 12207.0-1996 [B21] Process Definition Infrastructure

Testing needs to support the following IEEE/ELA Sud 12207.0-1996 [B21] processcs:
— Management (5.1)
— Acquisition (5.2)
— Supply (5.3)
— Development (5.4)
Operation (5.5)

— Maintenance process (5.6)

Mot all software projects include each of the lifecycle processes listed above. To be in conformance with
this standard, the test processes need include only those life cycle processes used by the project.

The 2008 version of IEEE-829 changed its focus from being document-oriented in the 1998 version to
being processed-oriented. This is a major change and the test documentation required in the 2008
version of IEEE 829 focuses on each of the processes in the system life cycle. This is important for
NTCIP testing because the ITS development and implementation processes follow the system
engineering process, which is the same approach as the life cycle processes in the IEEE standards.

u

T317: Applying Your Test Plan to NTCIP 1205 Standard

IEEE 829-2008 specifies the minimum task activities and tasks supporting each of the system life
cycle processes. The test effort will then perform the minimum tasks recommended for the assigned
system integrity level.

2.1.3. Master Test Plan
The following is excerpted from IEEE 829-2008 with regards to Master Test Plan.

8. Master Test Plan (MTP)

The purpose of the Master Test Plan (MTP) is to provide an overall test planning and test management
document for multiple levels of test (either within one project or across multiple projects). In view of
the software requirements and the project’s (umbrella) guality assurance planning, master test planning
as an activity comprises selecting the constituent parts of the project’s test effort; setting the objectives
for cach part; setting the division of labor (time, resources) and the interrelationships between the
parts; identifying the risks, assumptions, and standards of workmanship to be considered and
accounted for by the parts; defining the test effort's controls; and confirming the applicable objectives
set by quality assurance planning. It identifies the integrity level schema and the integrity level
selected, the number of levels of test, the overall tasks to be performed, and the documentation
requirements.

Master Test Plan Outline (full example)

1. Introduction
1.1. Document identifier
.2, Scope
1.3, References
L4, System overview and key features
1.5, Tesl overview
1.5.1 Organization
1.5.2 Master lest schedule
[.5.3 Integrity level schema
1.5.4 Resources summary
1.5.5 Responsibilities
1.5.6 Tools, techniques, methads, and metrics
2, Details of the Master Test Plan
2.1, Test processes including definition of test levels
211 Process: Management
2.1.1.1 Activity: Management of test effort
2.1.2 Process: Acquisition
21201 Activity: Acquisition support test
213 Process: Supply
2 1300 Activity: Planning test
2.1.4 Process: Development
2.1.4.1 Activity: Concept
2142 Activity: Requirements

T317 : Applying Your Test Plan to NTCIP 1205 Standard

2143 Activity: Design
2144 Activity: Implementation

2.1.4.5 Activity: Test
2146 Activity: Installation/checkout
2.1.5 Process: Operation
2150 Activity: Operational test
2.1.6 Process: Maintenance
2.1.6.1 Activity: Maintenance test
2.2, Test documentation requirements
2.3, Test admimstration requirements
2.4 Test reporting requirements
3. General
3.1. Glossary

3.2, Document change procedures and history

Note that the MTP identifies test activities and tasks to be performed for each of the test proces
and provides an overview of the test activities and tasks for all system life cycle processes. The
number and sequence of levels of test are also included. There may be more levels than listed in

ses,

IEEE 829. Possible additional test levels may include usability, performance, stress, recovery, and

regression. Small systems may have fewer levels of tests.

2.1.4. Level Test Plan
The following is excerpted from IEEE 829-2008 with regards to Level Test Plan.

9. Level Test Plan(s)

Specify for each LTP the scope, approach, resources, and schedule of the testing activities for its
specified level of testing, Identify the items being tested, the features to be tested, the testing tasks to
be performed, the persennel responsible for each task, and the associated risk(s). In the title of the plan,
the word “Level” is replaced by the organization’s name for the particular level being documented by
the plan (e.g.. Component Test Plan, Component Integration Test Plan, Swvstem Test Plan, and
Acceptance Test Plan),

In most projects, there are different test levels requiring different resources, methods, and
environments, As a result, each level is best described in a separate plan, Different Level Test Plans
may require different usage of the documentation content topics listed below. Some examples of test
levels for the development activity to undertake (from [EEE/ELA Std 12207.0-1996 [B21]) arc as
follows:

T317: Applying Your Test Plan to NTCIP 1205 Standard

— Each software unit (IEEE Std 1008™-1987 [B9]) and database.
— Integrated units (IEEE Std 1008-1987 [B9]) and components,
— Tests for cach software requirement.

— Software gualification testing for all requirements.

— Systems integration: aggregates of other software configuration items, hardware, manual
operations, and other systems. [t s not unusual for large systems to have multiple levels of
integration testing.

— System qualification testing for syslem requirements,

Level Test Plan Outline (full example)
1. Introduction
1.1. Document identitier
1.2. Seope
1.3, References
1.4, Level in the overall sequence
1.5, Test classes and overall test conditions
2. Details for this level of test plan
2.1 Testitems and their identifiers
2.2 Test Traceablity Matrix
2.3 Features to be tested
2.4 Features not to be tested
2.5 Approach
2.6 Item pass/fail criteria
2.7 Suspension criteria and resumption reguirements
2.8 Test deliverables
3, Test management
3.1 Planmed activities and tasks; test progression
3.2 Environment/infrastructure
3.3 Responsibilities and authority
3.4 Interfaces among the parties involved
3.5 Resources and their allocation
3.6 Training
3.7 Schedules, estimates, and costs
3.8 Riskis) and contingency(s)
4. General
4,1 Quality assurance procedures
4.2 Metrics
4.3 Test coverage
4.4 Glossany
4.5 Document change procedures and history

11

T317 : Applying Your Test Plan to NTCIP 1205 Standard

2.1.5. Test Documentation

Also called test deliverables in IEEE 829-2008. The following graphic is excerpted from IEEE 829-2008
with regards to test documentation that is to be documented prior to test execution or post-test

execution.

Master Tesl # ltesnny Level sebeme and chonee
PLY B b R [a h
Plam (A1 UE. o Overasll fest processes, activities, ol tisks
Clase ®)
i o Roloeot test levels and documents

Awceplance Tesl Svsbem Lest Compaonent Component lest = Soope oot leved
Plan (1 TE, Clase) Plasn (1T, Intepration Test Plan Plan (TP, Clause %) ® Resources
“lanse TP Clause 9
Clause 1) (LTE, Clause) o Alethodis
| Mode: Uhe test levels are Tor illustsdion fur
Acceptance Test » More detail ‘updaies development process only, amd may be different,
Design (LTI, for test methods possibly including more or less test levels. The
Clause 10 successor documents are only illustrated for the
1 accepiance test, but they apply to all levels of test.
I 1
I [
Acceptance Test . I'rlpul Acceptance Test * Test setup amd
Case{s) {LTC, Procedure(s) execulion instructions
Clause 11) | ({LTPr, Clause 12}

Level Imterin Test
Status Report .
(LITSR, mmr’afsu * REEERR gy snc
resulls summary
Level Test Log(s) Anomaly
* All detailed (LTL, Clause 13) Repori(s) (AR, ¢ [ncorrect or unexpected results
results Clause 14)

| | I

1 r
Swstem Test Componenl

Acceplance Tiest Component Test

Report (TR, Pepart (111, Integration "lest Report (1R,
Claiise T Clawse 16} Reprort (TR, Clase Clase 160
j,]]
Master Lest Beport o Appresale pass (il

(NI, Clanse 17
e hppregale lest resulls

2.2. Difference between NTCIP 8007 and IEEE 829

NTCIP 8007 is part of the NTCIP standards family and serves as a main document for NTCIP testing. It
defines the testing requirements that can be used to produce test documentation based on IEEE
829, but customizes the testing principles for the NTCIP environment.

The main difference between NTCIP 8007 and IEEE 829 is twofold:

e For simple devices such as CCTV cameras, NTCIP combines test case and test procedure into
one document. By doing so, one identification number is used for the test case and its
associated test procedure. When another test case needs to be called out in the test
procedures, one of the test steps can reference the test case number and execute that test
case and its associated test procedure. For complex devices, a better option may be to
separate test cases and test procedures as suggested by IEEE 829. Whether they are
separate or combined, the test plan will need to clearly identify the test documentation
requirements based on the complexity of the test.

e Define a set of keywords used for developing test procedures.

Excerpted below are the keywords defined in NTCIP 8007.

3.1 COMMUNITY NAME IN: The value contained in the 'community’ field of the last SNMP Message
received from the DUT. See RFC 1157 for additional details related to the community name.

3.2 COMMUNITY NAME OUT: The value that the test application shall use for the 'community' field of the
next SNMP Message sent to the DUT. See RFC 1157 for additional details related to the community
name. Unless otherwise specified, this value shall be set to the administrator community name as stored
in the DUT.

3.3 CONFIGURE: The CONFIGURE keyword shall be used as a predicate to the text of a test step in
order to indicate that the text identifies a configurable variable that should be defined by the user prior to
performing the test.

3.4 DELAY: The test application and user shall not perform any actions for a defined period of time,
which may be measured in time units or by monitoring some event that does not involve any exchange of
information over the communications media (e.g., DELAY until the temperature exceeds a threshold). In
the later case, the step should also define exception conditions to allow for possibility that the event never
happens.

3.5 DYNAMIC OBJECT NUMBER IN: The value contained in the 'Object ID' field of the last STMP Data
Facket received from the DUT. See NTCIF 1103 for additional details related to the dynamic object
number,

3.6 DYNAMIC OBJECT NUMBER QUT: The value that the test application shall use for the "Object 1D’
field of the next STMP Data Packet sent to the DUT. See NTCIP 1103 for additional details related to the
dynamic object number.

T317 : Applying Your Test Plan to NTCIP 1205 Standard

3.7 ERROR INDEX: The value contained in the ‘error-index’ field of the last SNMP RESPONSE received
from the DUT. See RFC 1157 for additional details related to the error index.

3.8 EXIT: This keyword indicates that the user and test application should terminate the test case without
performing any more steps. The keyword by itself does not have any implications as to whether a given
test passes or fails.

3.9 GET: The test application shall transmit to the DUT one SNMP Message containing a GetRequest-
FDU, per the rules of NTCIP 2301. Each statement using this keyword shall unambiguously reference the
value for the ‘name’ field(s) to be included in the request. The GetRequest-PDU shall include all of the
names in its 'variable-bindings’ field. See RFC 1157 for additional details related to the GetRequest-
FDU.

Unless otherwise indicated, the user or test application shall VERIFY the following, in order:

T317: Applying Your Test Plan to NTCIP 1205 Standard | 14

a} The DUT responds with exactly one SNMP Message that contains a GetResponse-PDU, per the
rules of NTCIP 2301; this is the RESPOMSE. The DUT may also transmit one or more SNMP
Messages that contain a Trap-PDU

b} The value contained in the 'version' field of the RESPONSE equals 0 (version-1)

c) COMMUNITY MAME IN eguals COMMUNITY NAME OUT

d} REQUEST ID IN equals REQUEST ID OUT

e} RESPONSE ERROR equals 0 (noError)

f) ERROR INDEX equals 0

g} The 'variable-bindings' field contains the same number of VarBind structures as where contained in
the GelRequest-PDU

h) The value of each name field in the RESPOMNSE equals the value of the name field in the
GetRequest-PDU that is in the same ordered position.

3.10 GET-NEXT: The test application shall transmit to the DUT one SNMP Message containing a
GetMextRequest-PDU, per the rules of NTCIP 2301. Each statement using this keyword shall
unambiguously reference the value for the 'name’ field(s} to be included in the request. The
GetMextReguest-PDU shall include all of the names in its 'variable-bindings' field. See RFC 1157 for
additional details related to the GetNextRequest-PDU.

Unless otherwise indicated, the user or test application shall VERIFY the following, in order:

a} The DUT responds with exactly one SNMP Message that contains a GetResponse-PDU, per the
rules of NTCIP 2301; this is the RESPOMNSE. The DUT may also transmit one or more SNMP
Messages that contain a Trap-PDU

b} The value contained in the 'version' field of the RESPONSE equals 0 (version-1)

c) COMMUNITY MAME IN equals COMMUNITY NAME OUT

d) REQUEST ID IN equals REQUEST ID OUT

e} RESPONSE ERROR equals 0 (noError)

f) ERROR INDEX equals 0

g} The 'variable-bindings' field contains the same number of VarBind structures as where contained in
the GelNextRequest-PDU

h) The value of each name field in the RESPONSE is greater than the value of the name field in the
GetNextRequest-PDU that is in the same ordered position.

3.11 NEXT: A reference to the next sequential test step.

3.12 PERFORM: The user or test application shall perform another test case as a part of this test case.
Unless otherwise indicated in the "PERFORM" statement, the user (and test application) shall use the
variable values defined when the other test case is performed in a stand-alone fashion.

Example 1: In order to test the illumination features of a sign, it may be necessary to display a message
on the sign; however displaying a message on the sign may be a separate requiremeant that is addrassed
by a separate test case. For the illumination test, it does not matter what text is displayed, any message
will do. Thus, the call to the other test case may look something like:

PERFORM the "Display a Message" test case.
Example 2: In order to test the flashing capabilities of a sign, it may be necessary to display a message
with a certain set of specific characteristics. Thus, the flashing test case might have a step to
CONFIGURE the flashing_message variable and a separate step elsewhere in the procedure to:

FERFORM the "Display a Message” test case where message = flashing_message,

3.13 PRE-CONDITION: The PRE-CONDITION keyword shall be used as a predicate to the text of a test
step in order to indicate that the text provides a textual description of any pre-conditions for the test case.

T317 : Applying Your Test Plan to NTCIP 1205 Standard | 15

Pre-conditions are conditions that must be met prior to running a test case. Only one pre-condition shall
exist in a test case and it shall always be the first step listed, if present.

3.14 POST-CONDITION: The POST-COMDITION keyword shall be used as a predicate to the text of a
test step in order to indicate that the text provides a textual description of any post-conditions for the test
case. Post-conditions are conditions that exist after the successful completion of a test case. Only one
post-condition shall exist in a test case and it shall always be the |ast step listed, if present.

3.15 RECORD: The user (or test application) shall record the information indicated by the test step as a
part of the test results. This information may be referenced by a later step of the test case (or by a later
step of a calling step case).

3.16 REQUEST ID OUT: The value that the test application shall use for the 'request-id’ field of the next
SNMP Message sent to the DUT. See RFC 1157 for additional details related to the request id. Unless
otherwise specified, this value shall start at an arbitrary value and shall increment by one for each SNMP
Message sent by the test application.

3.17 REQUEST ID IN: The value contained in the 'request-id' field of the last SNMP Message received
from the DUT. See RFC 1157 for additional details related to the request id.

3.18 RESPOMNSE: The last SNMP Message containing a GetResponse-PDU received from the DUT.

NOTE—SMNMP uses the same message structure to respond to a GelRequest-PDU, a GetNextRequest-
PDU, and a SetRequest-PDU. SNMP calls this message structure a 'GetResponse-PDU', even though it
may be a response to a SetRequest-PDU.

3.19 RESPONSE ERROR: The value contained in the "error-status' field of the last SNMP Message
received from the DUT. See RFC 1157 for additional details related to the error status.

3.20 RESPONSE OID: The value contained in the indicated 'name’ field of the last SNMP Message
received from the DUT. Each statement using this keyword shall unambiguously reference which name
field is to be considered, if the response is expected to contain multiple name fields,

3.21 RESPONSE VALUE: The value contained in the indicated "value' field of the last SNMP Message
received from the DUT, Each statement using this keyword shall unambiguously reference which value
field is to be considered, if the response is expected to contain multiple value fields.

3.22 RESTART-POINT: The RESTART-POINT keyword shall be used as a predicate to the text of a test
step in order to indicate that the step is a point in the procedure that the test can be restarted if the test
had to stop for any reason (e.q., due to a failure in the DUT, a failure by the test application, a break
taken by the user, etc.). The test step shall identify the actions and conditions necessary to restart the
procedure at the given location. When normally performing the test, the RESTART-POINT step should be
ignored.

3.23 SET: The test application shall transmit to the DUT one SNMP Message containing a SetRequest-
PDU, per the rules of NTCIP 2301. Each statement using this keyword shall unambiguously reference the
value for the 'name’ field(s) to be included in the request. The statement shall also indicate the value of
the “value' field associated with each 'name’ field. Unless otherwise indicated, the value will be encoded
according to the SYNTAX of the associated object. The SetRequest-PDU shall include all of the names
and values, with their indicated associations in its ‘variable-bindings' field. See RFC 1157 for additional
details related to the SetRequest-PDU.

Unless otherwise indicated, the user or test application shall VERIFY that:

T317: Applying Your Test Plan to NTCIP 1205 Standard | 16

a) The DUT responds with exactly one SNMP Message that contains a GetResponse-PDU, per the
rules of NTCIP 2301; this is the RESPONSE. The DUT may also respond with one or more SNMP
Messages that contain a Trap-FDU

b} The value contained in the 'version' field of the RESPONSE equals 0 (version-1)

c) COMMUNITY MAME IN equals COMMUNITY NAME OUT

d) REQUEST ID IN equals REQUEST ID QUT

e} RESPONSE ERROR equals 0 (noError)

f) ERROR INDEX equals 0

g} The "variable-bindings' field contains the same number of VarBind structures as where contained in
the SetRequest-PDU

h} The value of each name field in the RESPOMNSE equals the value of the name field in the
SetRequest-PDU that is in the same ordered position.

iy The value of each value field in the RESPONSE equals the value of the value field in the SetRequest-
PDU that is in the same ordered position.

3.24 SET-UP: The SET-UP keyword shall be used as a predicate to the text of a test step in order to
indicate that the test step is a preparatory step in order to set up an environment in which the actual test
can take place. If the user and/or test application is unsuccessful in performing the test step, the user
{and/or test application) shall EXIT the test case and the test case will neither pass nor fail. The user
should then investigate the problem in performing the step and restart the test.

3.25 STMP-GET. The test application shall transmit to the DUT one STMP Data Packet containing a
STMP-GetRequest-PDU, per the rules of NTCIP 2301. Each statement using this keyword shall
unambiguously reference the dynamic object number to be included in the request. The STMP-
GetRequest-PDU shall include the dynamic object number in the request. See NTCIP 1103 for
additional details related to the STMP-GetRequest-PDU.

Unless otherwise indicated, the user or test application shall VERIFY the following, in order:

a) The DUT responds with exactly one STMP Data Packet that contains a STMP-GetResponse-PDU,
per the rules of NTCIP 2301; this is the RESPONSE. The DUT may also transmit one or more SNMP
Messages that contain a Trap-PDU

b} DYMNAMIC OBJECT NUMBER IN equals DYNAMIC OBJECT NUMBER OUT

c) The 'data’ field can be properly parsed given the current dynamic object definition

3.26 STMP-SET: The test application shall transmit to the DUT one STMP Data Packet containing a
STMP-SetRequest-PDU, per the rules of NTCIP 2301. Each statement using this keyword shall
unambiguously reference the dynamic object number to be included in the request. The statement shall
also indicate the value of each Referenced Object. Unless otherwise indicated, the value will be encoded
according to the SYNTAX of the associated Referenced Object. The STMP-SetRequest-PDU shall
include the dynamic object number and the values of the Referenced Objects. See NTCIP 1103 for
additional details related to the STMP-SetRequest-PDU.

Unless otherwise indicated, the user or test application shall VERIFY that:

a) The DUT responds with exactly one STMP Data Packet that contains a STMP-SetResponse-PDU,
per the rules of NTCIP 2301; this is the RESPONSE. The DUT may also respond with one or more
SMNMP Messages that contain a Trap-PDU

b} DYMAMIC OBJECT NUMBER IN equals DYNAMIC OBJECT NUMBER OUT

c) The PDU Information field is empty.

3.27 VERIFY: The user or test application shall evaluate the expression that follows this keyword. Each
statement using this keyword shall contain an unambiguous expression that will always evaluate to either
true or false without subjective or qualitative judgments by the Tester.

If the result is true:

a) The verification step shall pass, and
b} The test shall continue to the next step, unless otherwise indicated in the test case.

Otherwise, if the result is false:

a) The verification step shall fail,
b) The test case shall fail, and
¢) The test case shall EXIT, unless otherwise indicated in the test case

NOTE—While criteria are often stated in exact terms (e.qg., "The response shall be '3™; or, "The sign shall
display TEST™ etc.), it may also be the case that criteria may be stated as ranges or thresholds (e.q.,
“The response shall be between ‘2" and "18" inclusive”, or, "The response shall be "3’ or greater”; etc.).
Each approach is valid and should be considered in the construction of a test case.

3. Case Studies

Included below are the steps to develop a CCTV Unit Test Plan based on the level test plan outline
provided by IEEE 829-2008.

Outline provided by IEEE 829-2008 CCTV Unit Test Plan

1 Introduction

1.1 Document identifier Unique ID for the unit testing

1.2 Scope Describe the scope of the CCTV Unit Test. The

details for each test cameras, and their revision
history both hardware and software. Describe the
inclusions, exclusions, assumptions, and
limitations. It is important to define clearly the
limits of the test effort.

1.3 References List all of the applicable reference documents.

1.4 Level in the overall sequence e Show the CCTV unit testing in the overall test
hierarchy such as CCTV subsystem and system
acceptance testing, overall communication
network testing with other ITS devices, etc.

e Adiagram will be helpful

1.5 Test classes and overall test conditions | e Describe the attributes of the CCTV camera
unit test — Pan-Tilt-Zoom (PTZ), presets, focus,
iris, alarms, zones, etc.

e Detailed descriptions should be provided how
these features will be tested in groups, i.e. test
classes, and their associated test conditions for
each group.

e Test conditions

0 Positive testing — valid input values

0 Negative testing —invalid values for

error processing

O Boundary testing — input values just
above, just below, and just on each
limit

Details for this level of test plan

2.1 Test items and their identifiers e CCTV camera model, make, firmware version,

etc.

e Reference to the CCTV user manual,
operations guide, installation guide, etc.

e Transfer from other environments to the test
environment. For example, from factory to test
lab, or agency’s facility if the test will be
performed by the agency.

2.2 Test Traceability Matrix e Provide a list of requirements and

corresponding test cases or procedures -
Requirements to Test Case Matrix defined in
NTCIP 8007

e Orareference to a larger Test Traceability
Matrix for all levels of test, e.g. the matrix
includes unit testing, subsystem testing,
system testing, operation testing, etc. and
traces to multiple levels of life cycle
documentation products. It may include both
forward and backward tracing.

2.3 Features to be tested CCTV features based on project-specific
requirements — Requirements Traceability Matrix
(RTM). These camera features include NTCIP
objects identified in the RTM such as Pan-Tilt-Zoom
(PTZ), presets, focus, iris, alarms, zones, etc. Refer
to A317b for example RTM.

2.4 Features not to be tested Remote control functions, for example, TMC
control, may not be tested during unit test (may be
part of the CCTV subsystem testing)

2.5 Approach e Overall approach for the unit testing

e Commonly combined in a Test Matrix with
features to be tested
e Test methods — black box, white box, analysis,
inspection
0 Black box: The test inputs can be
generated and the outputs captured
and completely evaluated from the
outside of a test item; i.e., test cases

are developed from the test item
specification, only without looking at
the code or design.

0 White box: Considers the internal
structure of the software (e.g.,
attempts to reach all of the code).
Commonly requires some kind of test
support software.

0 Analysis: Just viewing the outputs
cannot confirm that the test executed
successfully; some kind of additional
computations, simulations, studies,
and so on will be required.

O Inspection: This is a static test; the
code or documentation is read and
examined without being executed.

2.6

Item pass/fail criteria

Specify the criteria to be used to determine
whether each test item has passed or failed
testing. This is commonly based on the number of
anomalies found in specific severity category(s).

2.7

Suspension criteria and resumption
requirements

Specify the criteria used to suspend all or a portion
of the testing activity on the test items associated
with this plan. Specify the testing activities that
must be repeated when testing is resumed.

2.8

Test deliverables

Identify all information that is to be delivered by
the test activity (documents, data, etc.). The
following documents may be included:

— Unit Test Plan

— Unit Test Design

— Unit Test Cases

— Unit Test Procedures

— Unit Test Logs

— Anomaly Reports

— Unit Interim Test Status Reports

— Unit Test Report

— Master Test Report

Test input data and test output data may be
identified as deliverables. Test tools may also be
included.

Test management

Planned activities and tasks; test
progression

Identify the set of tasks necessary to prepare for
and perform testing. Identify all inter-task

dependencies. Identify any significant constraints
such as test item availability, testing resource
availability, and deadlines.

3.2

Environment/infrastructure

Specify both the necessary and the desired
properties of the test environment and any
relevant test data. This may include the physical
characteristics of the facilities, including the
hardware, the off-the shelf software, the test
support tools and databases, personnel (identifying
their organizations as appropriate), and anything
else needed to support the test. It includes the
environment for setup before the testing,
execution during the testing (including data
capture), and any post-testing activities (e.g., data
reduction and analysis). Also specify the level of
security that must be provided for, and any safety
issues related to, the testing facilities, software,
and any proprietary components. It may include
externally provided content topics (possibly
provided by third parties) including systems and/or
subsystems. Identify the source(s) for all of these
needs.

3.3

Responsibilities and authority

Identify the individuals or groups responsible for
managing, designing, preparing, executing,
witnessing, and checking results of this level of
testing, and for resolving the anomalies found.

3.4

Interfaces among the parties involved

Describe the means and the contents of
communication between the individuals and
groups. A figure that illustrates the flow of
information and data may be included.

3.5

Resources and their allocation

Delineate any additional required resources that
are not already documented by other parts of the
plan, which includes both internal and external
resources (such as outside test resources, e.g., test
labs, outsourcing, etc.).

3.6

Training

Specify test training needs by skill level. Identify
training options for providing necessary skills.

3.7

Schedules, estimates, and costs

Include test milestones identified in the software
or system project schedule as well as all test item
transmittal events. Estimate the time required to
do each testing task. Specify the schedule for each
testing task and test milestone. For each testing

resource (i.e., facilities, tools, and staff), specify its
periods of use.

3.8

Risk(s) and contingency(s)

Identify the risk issues that may adversely impact
successful completion of the planned level testing
activities. Specify potential impact(s) of each risk,
with contingency plan(s) for mitigating or avoiding
the risk.

General

Quality assurance procedures

Identify the means by which the quality of testing
processes and products will be assured. Include or
reference anomaly tracking and resolution
procedures. The quality assurance information
may be described in a Quality Assurance Plan.

4.2

Metrics

Identify the specific measures that will be
collected, analyzed, and reported.

4.3

Test coverage

Specify the requirement(s) for test coverage. Test
coverage is an indication of the degree to which
the test item has been reached or “covered” by the
test cases, including both the breadth and depth.
Test coverage is often expressed in terms of
percentage of code tested, and software or system
validation test coverage can be a percentage of
requirements tested. There is a need for
specification of coverage or some other method
for ensuring sufficiency of testing.

4.4

Glossary

Provide an alphabetical list of terms that may
require definition with their corresponding
definitions. This includes acronyms.

4.5

Document change procedures and
history

Specify the means for identifying, approving,
implementing, and recording changes to the test
plan.

4. Samples/Examples in PowerPoint Slides

Below is the summary of the examples provided in the PowerPoint slides for the test documents

including RTCTM, Test Cases, and Test procedures. This example is based on the Requirement
Traceability Matrix (RTM) provided in the previous module A317b.

4.1. Requirements Test Case Traceability Matrix (RTCTM)

Requirement Test Case

ID Title ID Title

3.3.2 Camera Control

3.3.2.1 | Preset Go to Position

3.3.2.2 | Move Camera to a Stored Position

C3.01 Preset Position
3.3.2.3 | Zoom Operation
C3.05 Delta Zoom Motion
C3.06 Absolute Zoom Motion
C3.07 Continuous Zoom Motion with Timeout
C3.08 Continuous Zoom Motion with Stop

3.3.2.4 | Camera Position Horizontally (Pan)

C3.11 Delta Pan Motion

C3.12 Absolute Pan Motion

C3.13 Continuous Pan Motion with Timeout
C3.14 Continuous Pan Motion with Stop

4.2, Test Case C3.01 and associated Test Procedures

Test Title: Preset Position

Case: .) .

c3.01 Description: | This test case stores and moves the camera to preset positions
Max_Preset From Project Requirements
Preset_Speed From the Test Plan

Variables:
Preset_Pan_Positionl From the Test Plan

Preset_Pan_Position2 From the Test Plan

Preset_Tilt Positionl From the Test Plan

Preset_Tilt_Position2 From the Test Plan

Pass/Fail The Device Under Test (DUT) shall pass every verification step included
Criteria: within the Test Case in order to pass the Test Case
Step Test Procedure Results
CONFIGURE: Determine a preset position for the camera between 0 and
0 rangeMaximumPreset.0 (per the project requirement). RECORD this
information as:
>>Max_Preset
2 SET-UP: if Max_Preset is less than 2, then EXIT
GET the following object: :
3) Pass / Fail
>>rangeMaximumPreset.0
a SET-UP: VERIFY that the RESPONSE VALUE is equal to Max_Preset; otherwise,
EXIT.
CONFIGURE: Determine the following value from the test plan. RECORD the
information as:
>>Preset_Speed
5 >>Preset_Pan_Positionl
>>Preset_Pan_Position2
>>Preset_Tilt_Position1
>>Preset_Tilt_Position2
SET the following objects to the values shown:
6 >>positionPan.0 = 02 Preset_Speed Preset_Pan_Position1 Pass / Fail
>>postionTilt.0 = 02 Preset_Speed Preset_Tilt_Position1
7 VERIFY that camera is in position 1. Pass / Fail
8 SET presetStorePosition.0 to 1 Pass / Fail
SET the following objects to the values shown:
9 >>positionPan.0 = 02 Preset_Speed Preset_Pan_Position2 Pass / Fail
>>postionTilt.0 = 02 Preset_Speed Preset_Tilt_Position2
10 VERIFY that camera moved to position 2. Pass / Fail
11 SET presetStorePosition.0 to 2 Pass / Fail
12 SET presetGotoPosition.0 to 1 Pass / Fail
13 VERIFY that camera moved in position 1. Pass / Fail

14 GET presetPositionQuery.0 Pass / Fail
15 VERIFY that RESPONSE VALUE = 1 Pass / Fail
16 SET presetGotoPosition.0 to 2 Pass / Fail
17 VERIFY that camera moved in position 2. Pass / Fail
18 GET presetPositionQuery.0 Pass / Fail
19 VERIFY that RESPONSE VALUE = 2 Pass / Fail
Test Case Results

Tested By: Date Tested: Pass / Fail
Test Case

Notes:

5. Glossary

The following acronyms are used in this module.

Acronym Definition
AR Anomaly Report
CCTV Close Circuit Television
DUT Device Under Test
LITSR Level Interim Test Status Report
LTC Level Test Case
LTD Level Test Design
LTL Level Test Log
LTP Level Test Plan
LTPr Level Test Procedure
LTR Level Test Report
MTP Master Test Plan
MTR Master Test Report
PPP Point-to-Point Protocol
PMPP Point-to-Multi-Point Protocol
PRL Protocol Requirement List
PTZ Pan-Tilt-Zoom
RTCTM Requirements Test Cast Traceability Matrix
RTM Requirements Traceability Matrix
SEP System Engineering Process
SNMP Simple Network Management Protocol

Acronym Definition

TCP/IP Transmission Control Protocol/Internet Protocol

The following terms and definitions are used in this module. All definitions are excerpted from IEEE
829-2008.

Term Definition
integrity level (A) The degree to which software complies or must comply with a
set of stakeholder-selected software and/or software-based
system characteristics (e.g., software complexity, risk assessment,
safety level, security level, desired performance, reliability, or
cost), defined to reflect the importance of the software to its
stakeholders.
(B) A symbolic value representing this degree of compliance
within an integrity level scheme.
integrity level scheme A set of system characteristics (such as complexity, risk, safety
level, security level, desired performance, reliability, and/or cost)
selected as important to stakeholders, and arranged into discrete
levels of performance or compliance (integrity levels), to help
define the level of quality control to be applied in developing
and/or delivering the software.
life cycle processes A set of interrelated activities that result in the development or
assessment of software products. Each activity consists of tasks.
The life cycle processes may overlap one another.

minimum tasks Those tasks required for the integrity level assigned to the
software to be tested.
test approach A particular method that will be employed to pick the particular

test case values. This may vary in specificity from very general
(e.g., black box or white box) to very specific (e.g., minimum and
maximum boundary values).

test case (A) A set of test inputs, execution conditions, and expected
results developed for a particular objective, such as to exercise a
particular program path or to verify compliance with a specific
requirement.

(B) Documentation specifying inputs, predicted results, and a set
of execution conditions for a test item. (adopted from IEEE Std
610.12-1990 [B2])

test class A designated grouping of test cases.

test design Documentation specifying the details of the test approach for a
software feature or combination of software features and
identifying the associated tests (commonly including the
organization of the tests into groups). (adopted from IEEE Std
610.12-1990 [B2])

test effort The activity of performing one or more testing tasks.

Term

Definition

test level

A separate test effort that has its own documentation and
resources (e.g., component, component integration, system, and
acceptance).

testing

(A) An activity in which a system or component is executed under
specified conditions, the results are observed or recorded, and an
evaluation is made of some aspect of the system or component.
(B) To conduct an activity as in (A).

test item

A software or system item that is an object of testing.

test plan

(A) A document describing the scope, approach, resources, and
schedule of intended test activities. It identifies test items, the
features to be tested, the testing tasks, who will do each task,
and any risks requiring contingency planning.

(B) A document that describes the technical and management
approach to be followed for testing a system or component.
Typical contents identify the items to be tested, tasks to be
performed, responsibilities, schedules, and required resources for
the testing activity. (adopted from IEEE Std 610.12-1990 [B2]) The
document may be a Master Test Plan or a Level Test Plan.

test procedure

(A) Detailed instructions for the setup, execution, and evaluation
of results for a given test case.

(B) A document containing a set of associated instructions as in
(A).

(C) Documentation that specifies a sequence of actions for the
execution of a test. (adopted from IEEE Std 982.1TM-2005 [B7])

validation

(A) The process of evaluating a system or component during or at
the end of the development process to determine whether it
satisfies specified requirements. (adopted from IEEE Std 610.12-
1990 [B3])

(B) The process of providing evidence that the software and its
associated products satisfy system requirements allocated to
software at the end of each life cycle activity, solve the right
problem (e.g., correctly model physical laws, implement business
rules, or use the proper system assumptions), and satisfy
intended use and user needs.

verification

(A) The process of evaluating a system or component to
determine whether the products of a given development phase
satisfy the conditions imposed at the start of that phase.
(adopted from IEEE Std 610.12-1990 [B3])

(B) The process of providing objective evidence that the software
and its associated products comply with requirements (e.g., for
correctness, completeness, consistency, and accuracy) for all life
cycle activities during each life cycle process (acquisition, supply,
development, operation, and maintenance), satisfy standards,
practices, and conventions during life cycle processes, and
successfully complete each life cycle activity and satisfy all the
criteria for initiating succeeding life cycle activities (e.g., building
the software correctly).

6. References

e |EEE 829, IEEE Standard for Software Test Documentation, IEEE, 1998 or 2008 version.

e NTCIP 8007:2008, National Transportation Communications for ITS Protocol: Testing and
Conformity Assessment Documentation within NTCIP Standards Publications, v01,
AASHTO/ITE/NEMA, May 2008.

e NTCIP 9001 Version v04, National Transportation Communications for ITS Protocol, The
NTCIP Guide, AASHTO/ITE/NEMA, July 2009.

e NTCIP 1205 v01.08, National Transportation Communications for ITS Protocol: Object
Definition for Closed Circuit Television (CCTV) Camera Control, AASHTO/ITE/NEMA,
December 2001, or Revision Amendment Al vO8a, November 2004.

e Systems Engineering Guidebook for Intelligent Transportation Systems Version 3.0, United
States Department of Transportation, November 2009.

7. Study Questions

These are questions from the presentation.

1) Which of the following Statements is not correct?

a) Requirements can be verified by inspection, demonstration, analysis and testing of the system
products.

b) The testing process provides an objective assessment of system products throughout the system
life cycle.

c) Test documentation needs to be prepared only at the completion of system development

d) Development of test plans can begin as soon as the system ConOps is being developed.

2) Which of the following is included in LTP but not in MTP?

a) Testscope

b) Test processes

c) Testresources and responsibilities
d) Test Traceability Matrix

3) Which of the following is part of test documentation?

a) Test Data

b) Level Test Plans

c) Requirement Test Case Traceability Matrix
d) All of the above

T317: Applying Your Test Plan to NTCIP 1205 Standard

Which of the following test documents is included in NTCIP 1205?

Protocol Requirements List (PRL)

Requirements Traceability Matrix (RTM)
Requirements Test Cast Traceability Matrix (RTCTM)
None of the above

Which of the following statements is correct?

Data analyzer is an active test tool and can be used to respond to the DUT’s request
All possible permutations and combinations of valid input values need to be tested
Performing boundary analysis is not necessary during NTCIP testing

None of the above

	Module Description
	1. Introduction/Purpose
	2. Reference to Other Standards
	2.1. Difference between IEEE 829-1998 and IEEE 819-2008
	2.1.1. Integrity Levels
	2.1.2. Test Processes
	2.1.3. Master Test Plan
	2.1.4. Level Test Plan
	2.1.5. Test Documentation

	2.2. Difference between NTCIP 8007 and IEEE 829

	3. Case Studies
	4. Samples/Examples in PowerPoint Slides
	4.1. Requirements Test Case Traceability Matrix (RTCTM)
	4.2. Test Case C3.01 and associated Test Procedures

	5. Glossary
	6. References
	7. Study Questions

