Mac Lister

Program Manager Knowledge and Technology Transfer
ITS Joint Program Office
Mac.Lister@dot.gov

www.pcb.its.dot.gov
ITS Transit Standards
Professional Capacity Building Program

Module 2:
Transit Management Standards, Part 1 of 2
Instructor

Carol L. Schweiger,
Vice President
TranSystems Corporation
Boston, MA
Target Audience

- Transit management staff (e.g., department heads and senior management) who are considering introducing or upgrading technology to meet operational and customers’ needs;

- Transit agency procurement and grants staff; and

- Transit technology vendors and consultants.
Recommended Prerequisite(s)

Recommended prior knowledge includes:

- General understanding of transit technology used in operations, planning, and maintenance
- Basic understanding of transit-related portions of the National ITS Architecture
Curriculum Path (Decision-Maker)

- Introduction to ITS Transit Standards
 - Module 1
- Transit Management, Part 1 of 2
 - Module 2
- TCIP, Part 1 of 2
 - Module 3
- Traveler Information, Part 1 of 2
 - Module 6
- Electronic Fare Payment Systems
 - Module 10
- Transit and the Connected Vehicle Environment/Emerging Technologies, Applications, and Future Platforms
 - Module 11

Recommended Prerequisite Modules
 Optional Modules
Curriculum Path (Project Manager)

Introduction to ITS Transit Standards
Module 1

Transit Management, Part 1 of 2
Module 2

Transit Management, Part 2 of 2
Module 5

TCIP, Part 1 of 2
Module 3

TCIP, Part 2 of 2
Module 4

Traveler Information, Part 1 of 2
Module 6

Arterial Management & Transit Signal Priority, Part 1 of 2
Module 8

Electronic Fare Payment Systems
Module 10

Traveler Information, Part 2 of 2
Module 7

Arterial Management & Transit Signal Priority, Part 2 of 2
Module 9

Transit and the Connected Vehicle Environment/Emerging Technologies, Applications, and Future Platforms
Module 11

Recommended Prerequisite Modules
Optional Modules
Curriculum Path (Project Engineer)

- **Introduction to ITS Transit Standards**
 - Module 1
- **Transit Management, Part 1 of 2**
 - Module 2
- **TCIP, Part 1 of 2**
 - Module 3
- **Transit Management, Part 2 of 2**
 - Module 5
- **TCIP, Part 2 of 2**
 - Module 4
- **Traveler Information, Part 1 of 2**
 - Module 6
- **Arterial Management & Transit Signal Priority, Part 1 of 2**
 - Module 8
- **Traveler Information, Part 2 of 2**
 - Module 7
- **Arterial Management & Transit Signal Priority, Part 2 of 2**
 - Module 9
- **Electronic Fare Payment Systems**
 - Module 10
- **Transit and the Connected Vehicle Environment/Emerging Technologies, Applications, and Future Platforms**
 - Module 11

Recommended Prerequisite Modules

Optional Modules
Learning Objectives

1. Describe (in overview terms) how transit management functions and systems fit into the National ITS Architecture

2. Describe the core functions and taxonomy of Transit Management systems

3. Briefly describe the functions of systems within the Transit Management taxonomy, and briefly identify the relationships and data exchange among Transit Management systems, Traveler Information, Transit Signal Priority, and Fare Collection systems

4. Explain the role of systems engineering and standards in procurement
Learning Objective #1: Describe (in overview terms) how transit management functions and systems fit into the National ITS Architecture

- Brief review of key concepts of National ITS Architecture (using Module 1 as a reference), including National ITS Architecture layers
- Explain Public Transportation Service Packages
- Explain related Service Packages (e.g., Interactive Traveler Information)
National ITS Architecture

- Provides a common framework for planning, defining, and integrating ITS

- The Architecture defines:
 - The functions that are required for ITS
 - The physical entities or subsystems where these functions reside
 - The information flows that connect these physical subsystems

- Template for the development of Regional ITS Architectures
Architecture Layers

Main Point: Architecture framework comprised of two technical layers, which must operate in the context of an Institutional Layer.

- **Institutional Layer** – institutions, policies, funding mechanisms and processes required for effective ITS implementation, operation, and maintenance. Shown as base because solid institutional support and effective decisions are prerequisite to an effective ITS program.

- **Transportation Layer** – where transportation solutions defined.

- **Communications Layer** provides for accurate and timely exchange of information between systems to support transportation solutions.
Architecture View

Main Point: Interconnected presentation of all of the components of the National ITS Architecture
Purpose of Standards in an Architecture

Main Point: Standards have a role in the National ITS Architecture as well as Regional ITS Architectures and Project Architecture

- Fundamental to open ITS environment
- Facilitate deployment of interoperable systems
- This figure shows relationship between ITS standards and architectures
Service Packages (SPs)

- Represent slices of Physical Architecture
- Collects subsystems, equipment packages, and architecture flows that provide desired service
- There are 11 public transportation SPs:
 - Transit Vehicle Tracking
 - Transit Fixed-Route Operations
 - Demand Response Transit Operations
 - Transit Fare Collection Management
 - Transit Security
Service Packages (SPs) (cont.)

(11 public transportation SPs cont.)

- Transit Fleet Management
- Multi-modal Coordination
- Transit Traveler Information
- Transit Signal Priority
- Transit Passenger Counting
- Multimodal Connection Protection
Transit Management Service Package Example

Main Point: An example of one transit SP diagram

APTS01 – Transit Vehicle Tracking
What is the purpose of ITS standards?

Answer Choices

a) To keep up with technology

b) Interoperability, compatibility, and interchangeability

c) To document data exchange among ITS systems

d) All of the above
Review of Answers

a) To keep up with technology
 Incorrect. Standards do not necessarily help agencies keep current with technology.

b) Interoperability, compatibility, and interchangeability
 Correct! Standards and protocols provide for interoperability, compatibility and interchangeability.

c) To document data exchange among ITS systems
 Incorrect. Standards facilitate data exchange but do not necessarily document the data exchange among ITS systems.

d) All of the above
 Incorrect. All of the above do not explain the purpose of ITS standards.
Which of these are not public transportation service packages?

Answer Choices

a) Transit Vehicle Tracking
b) Multimodal Connection Protection
c) Multimodal Coordination
d) Traffic Metering
Review of Answers

a) Transit Vehicle Tracking
 Incorrect. This SP is a Public Transportation SP.

b) Multimodal Connection Protection
 Incorrect. This SP is a Public Transportation SP.

c) Multimodal Coordination
 Incorrect. This SP is a Public Transportation SP.

d) Traffic Metering
 Correct! It is not defined as a Public Transportation SP (it is in the Traffic Management group of SPs).
Summary of Learning Objective #1

How Transit Management Functions and Systems Fit into the National ITS Architecture

- Key concepts of National ITS Architecture:
 - Layers: Institutional, Transportation, and Communications
 - User Services (US) – 4 public transit-specific US
 - Logical Architecture
 - Physical Architecture
 - Equipment Packages
 - Service Packages (SPs) – 11 Transit SPs

- Allows tailoring at the local level
- Accommodates changes in technology or institutional arrangements over time
Learning Objective #2: Describe the Core Functions and Taxonomy of Transit Management Systems

- **Fleet Operations and Management** – facilitate transit operations and provide input to senior management in terms of system performance

- **Safety and Security** – improve safety and security of transit staff and passengers

- **Maintenance** – facilitate maintenance activities such as engine and vehicle component monitoring, tracking of scheduled and unscheduled maintenance activities, inventory systems, and fuel management

- **Data Management** – data management and reporting, technology integration, geographic information system (GIS) application, service coordination facilitated by technology, and open data for third-party application development
Fleet Operations and Management

- Communications technologies
- Automatic vehicle location (AVL)
- Computer-aided dispatch (CAD)
- Automatic passenger counters (APCs)
- Scheduling (fixed-route and paratransit) systems
- Transfer connection protection (TCP)
- Transit signal priority (TSP)
- Yard management
- Intelligent vehicle technologies (e.g., collision warning and precision docking)
- Lane control technologies
Communications Technologies

- Depend on infrastructure and devices used to transmit voice and data
- Can transmit voice, text, data, and video over radio, cellular, or other wireless networks
- Types of wireless networks:
 - Wide area wireless (WAW)
 - Wireless local area network (WLAN)
 - Dedicated short-range communications (DSRC)
 - Land line and cellular telephone networks
 - Internet and intranet
Automatic Vehicle Location (AVL) and Computer-Aided Dispatch (CAD)

- For operations management – periodically receives real-time updates on vehicle locations and schedule/route status
- Onboard computer with global positioning system (GPS) and mobile data communications
- Provides decisions support tools used by dispatchers and supervisors, allowing proactive management of operations
- Allows for "single point" logon for all onboard systems
Automatic Passenger Counters (APCs)

- Monitors passenger activity by counting number of boarding and alighting passengers
- Data can either be stored for downloading/uploading or transmitted in real-time
- Most common type is infrared technology
- Ability to "stamp" data with exact bus stop location and time of day through integration with AVL
- Real-time information used for conditional TSP
- Can reduce cost of manual data collection and National Transit Database reporting requirements
- Agencies typically deploy APC equipment on either:
 - 12–25% of their vehicles and then rotate the vehicles on different routes as needed; or
 - All vehicles, especially when new buses are purchased
Transfer Connection Protection (TCP)

- Triggered when vehicle operator of incoming vehicle makes transfer request using on-board mobile data terminal (MDT) to enter outgoing route

- Central system determines whether outgoing vehicle can and should be held based on estimated arrival time of incoming vehicle

- Central system will notify:
 - Incoming vehicle’s operator whether outgoing vehicle will be held
 - Outgoing vehicle’s operator if it is to hold, until what time, and for what route

- Dispatcher reviews current pending transfers

- Will have expanded functionality within an application of Integrated Dynamic Transit Operations (IDTO) bundle of applications within USDOT Connected Vehicle Program
Transit Signal Priority (TSP)

- Give authorized transit vehicles ability to automatically change the timing of traffic signals using these strategies:
 - Passive Priority
 - Active Priority
 - Operating in Real-Time

- Can be limited to extending green cycle, but can result in red cycle truncation and phase insertion

- May be done “conditionally” based on passenger load, type of service (Bus Rapid Transit (BRT) vs. local) and schedule adherence
Transit Signal Priority (TSP) (cont.)

- Interaction of four major elements:
 - Transit vehicle
 - Transit fleet management
 - Traffic control
 - Traffic control management

- Enhanced with four functional applications of vehicle detection, priority request generation (PRG), priority request server (PRS), and TSP control
Yard Management

- Automatically locates vehicles within certain distance accuracy inside yard
- Allows yard attendants to adjust vehicle locations manually on a yard map
- Provides interface with CAD/AVL system to record pull-in and pull-out time, and assigned vehicle operators
- Can be interfaced with fixed-route scheduling software to access vehicle operator information in real-time
Intelligent Vehicle Technologies

- Rear Impact Collision Warning System
- Side Collision Warning/Object Detection System (aka Lane Change and Merge Collision Avoidance)
- Frontal Collision Warning System
- Intersection Conflict Warning System
- Lane Change/Merge Warning System
- Pedestrian Collision Warning
Intelligent Vehicle Technologies (cont.)

- Vehicle Assist and Automation (VAA):
 - Lateral Guidance (aka lane keeping for operating on narrow rights-of-way, such as freeway shoulders)
 - Vehicle Platooning
 - Precision Docking
 - Automated Operations
Lane Control Technologies

- Bus shoulder riding

- Intermittent bus lane (IBL)/moving bus lane (MBL)
 - Restricted lane for short time intended to be activated only when flow of general traffic is operating below speed that inhibits bus transit speeds
 - When traffic conditions are not expected to cause delays to bus, intermittent bus lanes are not activated
 - AVL required to establish bus location ties into variable message signs (VMS) to inform drivers of lane restriction and integration into real-time ITS traffic monitoring systems
ACTIVITY
Which one of these technologies are included in the **fleet operations and management** category?

Answer Choices

a) On-board automated voice announcements
b) Scheduling software
c) Data management and reporting
d) All of the above
Review of Answers

a) On-board automated voice announcements
 Incorrect. This technology is not included in any of the four categories in the taxonomy.

b) Scheduling software
 Correct! This technology is included in the Fleet Operations and Management category.

c) Data management and reporting
 Incorrect. This technology is included in the Data Management category.

d) All of the above
 Incorrect. These technologies are included in multiple categories in the taxonomy.
Safety and Security

- Mobile (On Board and Exterior) and Fixed Video Surveillance
- Covert Emergency Alarm and Covert Live Audio Monitoring
- On-board Digital Video Recorders (DVRs)
- G-force Monitoring
Mobile (onboard and exterior) and Fixed Video Surveillance

- Review recorded images
- Potential crime prevention
- Identify criminal activity and perpetrator(s)
- Identify improper passenger and driver behavior
- Incident/insurance investigation
Covert Emergency Alarm and Covert Live Audio Monitoring

- Allows dispatchers to listen in on what is happening inside vehicle while an incident is taking place.

- Covert microphones are one-way communications in order not to alert person responsible for incident that dispatcher/police are listening in.

- Driver in distress presses a covert switch that activates the covert microphone and monitor in dispatcher’s office automatically displays the information for that vehicle and map display zooms in on that vehicle.
Onboard Digital Video Recorders (DVRs)

- Connected to onboard cameras to record images from cameras
- Equipped with removable recording drive to allow playback of recorded video on centrally located playback system
- Able to store specific number of days of video, beyond which, previously recorded video will be overwritten
- May have capability to use Wi-Fi to upload video once vehicle enters yard or garage
G-Force Monitoring

- System includes g-force sensor and electronic data logger to capture and provide information about unusual movement of transit vehicles and capture events such as vehicle turns, hard braking, and fast acceleration or deceleration.

- G-force data can:
 - Assist in accident reconstruction and analysis
 - Protect transit agencies from litigation
 - Reduce cost of insurance
 - Analyze operator actions
 - Identify maintenance issues
Which of these technologies are in the safety and security category?

Answer Choices

a) G-force monitoring
b) Data management
c) Geographic information systems
d) Traveler information
Review of Answers

a) G-force monitoring

Correct! This technology is included in the Safety and Security category.

b) Data management

Incorrect. This is one of the categories and not included in the Safety and Security category.

c) Geographic information systems

Incorrect. This is included in the Data Management category.

d) Traveler information

Incorrect. This is not included in any of the four categories in the taxonomy.
Maintenance

- Engine and drivetrain systems monitoring
- Maintenance software to schedule and track scheduled and unscheduled maintenance activities, and manage parts inventory
- Fuel management system
Engine and Drivetrain Systems Monitoring
(a.k.a. vehicle component monitoring)

- Sensors that monitor various components of vehicle and report back on components performance.

- Maintenance supervisors can use this information to perform preventive maintenance intervention before a minor problem becomes major and costly one.

- Monitoring performed in real-time and problems are reported instantly.
Maintenance Software

- Facilitates the scheduling of maintenance activities
- Tracks maintenance actions
- Manages parts inventory
- Assists with:
 - Work order management
 - Tire management
 - Driver reporting
 - Mechanic/technician tracking
 - Purchase order generation
 - Customer/departmental billing
 - Use of bar coding and handheld data for parts management and inspections
Fuel Management System

- Measure and manage use of fuel
- Employ various methods and technologies to monitor and track:
 - Fuel inventories
 - Fuel purchases
 - Fuel dispensed
- Information stored and reports generated with data to inform management practices
- Online fuel management provided through use of web portals to provide detailed fueling data, enabling:
 - Consumption control
 - Cost analysis
 - Tax accounting for fuel purchases
Data Management

- Data management and reporting
- Technology integration
- Geographic information system (GIS) application
- Service coordination facilitated by technology
- Open data for third-party application development
Data Management and Reporting

- Data generated by public transit ITS components installed in vehicles at central locations or at other locations
- Data typically collected and archived in individual databases
- Once data is archived, used for “after-the-fact” analyses and reporting by different business units within a public transport organization (e.g., planning, operations, customer service)
- Utilize true potential of data by consolidating in central repository to make process of data management, analysis, and reporting more efficient
Technology Integration

- Opportunities for technologies to be integrated with systems that are external to transit agency, such as a regional traffic management center or an information services provider.

- Integration, when implemented from enterprise-wide perspective and regional perspective when appropriate, improves overall usability of technology environment made up of products from different vendors on multiple platforms and data from different systems.

- Facilitates “system” of interconnected ITS applications that collectively produce services and advantages far greater than ITS applications could achieve individually and independently.
Geographic Information System (GIS) Application

- Provide database management capabilities for display and editing of geographically referenced entities and underlying attribute data.

- Provide ability to perform analyses of geographic features such as:
 - Point databases (bus stops, communications transmitters, customer facilities)
 - Lines (streets, bus routes, subway tracks, rights of way)
 - Areas (census tracks, census blocks, traffic analysis zones, zip codes)
Geographic Information System (GIS) Application (cont.)

- Combine ability to accurately map geographically referenced data and to create themes such as employment density by traffic analysis zone or mobility limited persons by block group
- Allow transit agencies to analyze potential effects of adding, removing, or re-routing service
- Used to support trip itinerary planning software, flexible routing and scheduling software required in paratransit industry, and real-time vehicle location components of operations software
- Databases most relevant to transit
GIS (continued)
Service Coordination Facilitated by Technology

- Passengers able to reserve, manage, and track their transportation four local transportation providers.
- Customers access center by phone or Internet to make or alter travel plans, then track the vehicles in which they’ll be riding.
- Partners connected through computer dispatching software, which communicates with every vehicle by onboard computers.
- Callers to center able to receive information on health and human services, and general governmental and educational information.
Open Data for Third-party Application Development

Definition:

- Accessible at no more than cost of reproduction without limitations based on user identity or intent
- In a digital, machine readable format for interoperation with other data
- Free of restriction on use or redistribution in its licensing conditions

As of May 2013, 247 out of 863 U.S. transit agencies have open data
Open ITS Standards

- Standards made available to general public and developed (or approved) and maintained via collaborative and consensus driven process
- Facilitate interoperability and data exchange among different products or services
- Intended for widespread adoption
- Example: OpenStreetMap
4D Approach to Data Structure Development

- **Demand** – the identification and prioritization of stakeholder (various business units within an organization) and external data needs

- **Dimension** – the identification of archived ITS data elements and their characteristics that are of interest to the stakeholders

- **Data** – the identification of data sources and determining processes (e.g., extract, transform, and load [ETL] procedures) to consolidate data into central repositories

- **Delivery** – the design and development of reports, tools, and toolboxes to present data to stakeholders
Typical Datawarehouse and Datamart Configurations

Main Point: Potential ITS data organization

- **Maintenance:** Maintenance workflow, Parts inventory, Fleet Status, Vehicle component status
- **CAD/AVL:** Voice calls and data messaging, Incidents, Trip events, RSA at timepoint level, operator activity, vehicle activity, real-time schedule changes for drivers/vehicles, paratransit manifest exchange
- **Surveillance:** Event/location-tagged video clips and images
- **Customer Service:** Customer complaints, system usage by various categories, Information accuracy
- **Planning:** Route and Stop database, spatial database of service area
- **AFC:** Trip level rider counts and revenue
- **AFC:** Rider counts and revenue
- **APC:** Stop level rider counts and RSA, NTD data

ITS Datawarehouse

Datamarts for Stakeholders

- **Static Data**
- **Archived Field Data**
Summary of Learning Objective #2

Core Functions and Taxonomy of Transit Management Systems

- **Fleet Operations and Management** – Ten technologies implemented to facilitate transit operations and provide input to senior management
- **Safety and Security** – Four technologies improving the safety and security of transit staff and passengers through on-board and facility technologies
- **Maintenance** – Three technologies facilitate maintenance activities
- **Data Management** – Five technologies necessary to handle automatically ITS-generated data
Learning Objective #3: Identify the Relationships and Data Exchange Among Transit Management Systems, Traveler Information, Transit Signal Priority, and Fare Collection Systems

- **Fleet Operations and Management** – facilitate transit operations and provide input to senior management in terms of system performance

- **Safety and Security** – improve safety and security of transit staff and passengers

- **Maintenance** – facilitate maintenance activities such as engine and vehicle component monitoring, tracking of scheduled and unscheduled maintenance activities, inventory systems, and fuel management

- **Data Management** – data management and reporting, technology integration, geographic information system (GIS) application, service coordination facilitated by technology, and open data for third-party application development
Fleet Operations and Management

<table>
<thead>
<tr>
<th>Category</th>
<th>System/Technology</th>
<th>Dependent on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications technologies</td>
<td></td>
<td>Public/private voice and data communication backbones</td>
</tr>
<tr>
<td>Computer-aided dispatch (CAD)</td>
<td></td>
<td>• Voice and data communications technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatic vehicle location (AVL) system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Route and vehicle schedule data</td>
</tr>
<tr>
<td>Automatic vehicle location (AVL)</td>
<td></td>
<td>• Data communications technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Global positioning system (GPS) or other location enabling technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>such as WiFi</td>
</tr>
<tr>
<td>Automatic passenger counters (APCs)</td>
<td></td>
<td>• AVL system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Route and vehicle schedule data</td>
</tr>
<tr>
<td>Scheduling (fixed-route and paratransit) systems</td>
<td></td>
<td>Stop database (contains data such as stop name, location, routes that stop at this stop, direction of travel from this stop, list of amenities available at this stop)</td>
</tr>
</tbody>
</table>
Fleet Operations and Management (cont.)

<table>
<thead>
<tr>
<th>Category</th>
<th>System/Technology</th>
<th>Dependent on</th>
</tr>
</thead>
</table>
| **Fleet Operations and Management** | **Transfer connection protection (TCP)** | • AVL system
• CAD system |
| | **Transit signal priority (TSP)** | • AVL system
• CAD system (when TSP used based on schedule adherence status)
• Roadside signal infrastructure |
| | **Yard management** | Indoor positioning systems (e.g., radio frequency identification [RFID]-based, WiFi-based) |
| | **Intelligent vehicle technologies (e.g., collision warning and precision docking)** | Varies by technology application and deployment |
| | **Lane control technologies** | • AVL system
• CAD
• Virtual mirror
• Lane guidance systems
• Roadside signal infrastructure |
Example of Central System Technology Relationships

Main Point: Shows the relationships among central Transit Management and other transit ITS technologies.
Example of Onboard Technology Relationships

Main Point: Shows the relationships among on-board Transit Management technologies.
Computer-aided dispatch (CAD) is dependent upon which one of these technologies?

Answer Choices

a) Voice and data communications technologies

b) Automatic vehicle location (AVL) system

c) Route and vehicle schedule data

d) All of the above
Review of Answers

a) Voice and data communications technologies
 Incorrect. CAD is dependent on voice and data communications.

b) Automatic vehicle location (AVL) system
 Incorrect. CAD is dependent on AVL.

c) Route and vehicle schedule data
 Incorrect. CAD is dependent on route and vehicle schedule data.

d) All of these
 Correct! CAD is dependent on all of these.
Safety and Security

<table>
<thead>
<tr>
<th>Category</th>
<th>System/Technology</th>
<th>Dependent on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety and Security</td>
<td>Fixed video surveillance</td>
<td>Data communications technologies</td>
</tr>
<tr>
<td></td>
<td>Covert emergency alarm and covert live audio monitoring</td>
<td>• Voice and data communication technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CAD system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AVL system</td>
</tr>
<tr>
<td></td>
<td>On-board digital video surveillance</td>
<td>No dependence on other systems</td>
</tr>
<tr>
<td></td>
<td>G-force monitoring</td>
<td>AVL system</td>
</tr>
</tbody>
</table>
Maintenance

<table>
<thead>
<tr>
<th>Category</th>
<th>System/Technology</th>
<th>Dependent on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>Engine and drivetrain systems monitoring</td>
<td>OBD-II or Society of Automotive Engineers (SAE) J1708/J1939 compatibility of on-board computers within engine and drivetrain</td>
</tr>
<tr>
<td></td>
<td>Maintenance software to schedule and track scheduled and unscheduled maintenance activities, and manage parts inventory</td>
<td>No dependence on other systems</td>
</tr>
<tr>
<td></td>
<td>Fuel Management System</td>
<td>No dependence on other systems</td>
</tr>
</tbody>
</table>
Within the **maintenance** category, is fuel management dependent on another technology?

Answer Choices

a) Yes
b) No
Review of Answers

a) Yes

Incorrect. Fuel Management is not dependent on another technology.

b) No

Correct! Fuel Management is not dependent on another technology.
Data Management

<table>
<thead>
<tr>
<th>Category</th>
<th>System/Technology</th>
<th>Dependent on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>Enterprise database/ datawarehouse and reporting</td>
<td>• Open databases</td>
</tr>
<tr>
<td></td>
<td>Technology integration</td>
<td>• Data dictionary</td>
</tr>
<tr>
<td></td>
<td>Geographic information system (GIS) application</td>
<td>Multiple dependencies</td>
</tr>
<tr>
<td></td>
<td>Service coordination facilitated by technology</td>
<td>Spatial data recording and management systems</td>
</tr>
<tr>
<td></td>
<td>Open data for third-party application development</td>
<td>• CAD/AVL systems shared across participants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Voice and data communications technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard format for data such as General Transit Feed Specification (GTFS) and GTFS-real time</td>
</tr>
</tbody>
</table>
Summary of Learning Objective #3

Identify the Relationships and Data Exchange Among Transit Management Systems and Other Systems

Examples of dependencies for each Transit Management category:

<table>
<thead>
<tr>
<th>Category</th>
<th>System/Technology</th>
<th>Dependent on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet Operations and Management</td>
<td>Communications technologies</td>
<td>Public/private voice and data communication backbones</td>
</tr>
<tr>
<td></td>
<td>Automatic vehicle location (AVL)</td>
<td>- Data communications technologies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Global positioning system (GPS) or other location enabling technologies, such as WiFi</td>
</tr>
<tr>
<td></td>
<td>Automatic passenger counters (APCs)</td>
<td>- AVL system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Route and vehicle schedule data</td>
</tr>
<tr>
<td>Safety and Security</td>
<td>Fixed video surveillance</td>
<td>Data communications technologies</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Engine and drivetrain systems monitoring</td>
<td>OBD-II or Society of Automotive Engineers (SAE) J1708/J1939 compatibility of on-board computers within engine and drivetrain</td>
</tr>
<tr>
<td>Data Management</td>
<td>Enterprise database/ datawarehouse and reporting</td>
<td>- Open databases</td>
</tr>
<tr>
<td></td>
<td>Open data for third-party application development</td>
<td>- Data dictionary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Standard format for data such as General Transit Feed Specification (GTFS) and GTFS-real time</td>
</tr>
</tbody>
</table>
Learning Objective #4: Explain the Role of Systems Engineering and Standards in Procurement

- Extend case studies to explain the underlying SE process used and why it was used
- Describe Transit Management functions with standards and those without standards
- Discuss impact and importance of using SEP in procurement
Standards Facilitate Transit Management Relationships

- Standards facilitate relationships among Transit Management functions and among Transit Management and other transit functions.

- If standards do not exist, SEP will still facilitate the definition of these relationships.

- First several steps of SEP ensure that relationships among transit management components are defined:
 - Concept of Operations
 - System Requirements
Case Studies

<table>
<thead>
<tr>
<th>Agencies</th>
<th>Project</th>
</tr>
</thead>
</table>
| Chattanooga Area Regional Transportation Authority (CARTA), Chattanooga, TN | - SmartBus Project
- Generally followed Vee; tailored approach
- Better suit scale of organization
- Better suit incremental approach (sequence of individual project deployments) |
| LYNX, Orlando, FL | - Model Orlando Regionally Efficient Travel Management Coordination Center (MORETMCC) Project
- Used SEP |
| Efficient Deployment of Advanced Public Transportation Systems (EDAPTS) Program | - Tailored the Vee for rural and small transit authority technology projects
- Bronco Express example |
SEP Vee Model Adapted by CARTA
CARTA’s Approach to Applying SEP

- Helped explore and define an overall technology program vision
- Defined ongoing and near-term procurement packages as well as medium- and long-term plans = ConOps
- Developed project deployment plan for each procurement
- Included requirements in procurement as well as acceptance matrix that was basis for later SEP steps
- Vendor completed collaborative design documentation and review process
- Consultant responsible for in-house testing prior to the start of formal acceptance testing
- Testing followed procedures collaboratively planned in advance to verify all acceptance matrix requirements
CARTA’s Keys to Success

- Using standards in the procurement – SAE J1939 for monitoring common engine, transmission, and braking faults
- Documenting long-term vision for technology
- Avoiding temptation to do too much too fast
- Being willing to accept schedule delays when needed to help manage deployment risks
- Using a data warehouse
- Testing systems thoroughly before introducing them to operations
LYNX Model Orlando Regionally Efficient Travel Management Coordination Center (MORETMCC) SEP

- Problem: What are you trying to solve?
- Concept: How do you think you will solve the problem? Who are the stakeholders?
- Needs: What do the stakeholders need the solution to do?
- Requirements: How must the solution perform to meet the needs?
- Design: Incorporate the problem statement, concept, needs, and requirements.
MORETMCC Vision

Main Point: The strategic needs of the TMCC look at the overall TMCC vision from the following four touch points: Customer, Agency, Center of Strategic Operations, and Vehicle.
Efficient Deployment of Advanced Public Transportation Systems (EDAPTS)

- EDAPTS offers:
 - Simple Systems Engineering Methodology
 - Needs Identification Guidelines
 - Procurement Tools
 - EDAPTS Research Reports

- Simplified Systems Engineering Methodology
 - Assumes Commercial Off-The-Shelf (COTS)
 - Modified FHWA/FTA V-Model
 - Used Transit Communications Interface Profiles (TCIP)
 - Builds On Operations Guidelines
 - Operational Scenarios
Efficient Deployment of Advanced Public Transportation Systems (EDAPTS) (cont.)

- Needs Identification Guidelines
 - Stakeholders
 - Outcomes
 - Scenarios
 - Priorities
 - Operational Scenarios
EDAPTS SEP and Adaptation of the Vee Model

Main Point: Shows how EDAPTS used the systems engineering process.

Grey Color Blocks Are Done By Vendor Without Direct Purchaser Requirements
Does EDAPTS assume Commercial-off-the-Shelf (COTS) using a simplified SEP?

Answer Choices

a) Yes
b) No
Review of Answers

a) Yes

Correct! EDAPTS assumes Commercial-off-the-Shelf (COTS) using a simplified SEP.

b) No

Incorrect. EDAPTS does assume Commercial-off-the-Shelf (COTS) using a simplified SEP.
Transit Management Functions with Standards

- Standards in several Transit Management functions, primarily within:
 - Fleet Operations and Management
 - Data Management
- Serial Control and Communications Heavy Duty Vehicle Network
 - Related Standards:
 - SAE J1708
 - SAE J1939
 - SAE J1587
 - SAE J1944
Transit Management Functions with Standards (cont.)

- Transit Communications Interface Profiles (TCIP) – two modules on this
- General Transit Feed Specification (GTFS)
- General Transit Feed Specification (GTFS)-realtime
- TransXChange
ACTIVITY
Which one of these standards is used for CAD/AVL systems?

Answer Choices

a) GTFS
b) SAE J1939
c) TransXChange
d) All of the above
Review of Answers

a) GTFS
Incorrect. GTFS defines a common format for public transportation schedules and associated geographic information.

b) SAE J1939
Correct! This standard is the vehicle bus used for communication and diagnostics among vehicle components, including CAD/AVL.

c) TransXChange
Incorrect. TransXChange is the UK nationwide standard for exchanging bus schedules and related data.

d) All of the above
Incorrect. These standards and formats are used for different purposes – not just for CAD/AVL.
Impact and Importance of Using SEP in Procurement

- Allows You To:
 - Define and manage system requirements
 - Identify and minimize risk
 - Integrate system components (physical and organizational)
 - Manage system complexity
 - Enhance communication and system understanding
 - Verify products and services meet customer needs

- Enables Business Planning
- Improves Project Cost Performance
Impact and Importance of Using SEP in Procurement (cont.)

Main Point: Shows where procurements happen within the SEP.
Ask Yourself These Questions Before You Begin a Project, and Repeatedly Ask Them Throughout the SE Process

- How well did the system satisfy the needs of the stakeholders?
- Did the project stay within the budgeted cost and schedule?
- What types of challenges occurred during technology implementation?
Summary of Learning Objective #4

Explain the Role of Systems Engineering and Standards in Procurement

- Case studies to explain the underlying SEP used and why it was used:
 - CARTA
 - LYNX
 - EDAPTS

- Transit Management functions with standards:
 - Fleet Operations and Management
 - Data Management
Summary of Learning Objective #4 (cont.)

Explain the Role of Systems Engineering and Standards in Procurement

- Impact and importance of using SEP in procurement:
 - Intended to be integrating mechanism for balanced solutions addressing:
 - Capability needs
 - Design considerations
 - Constraints
 - Intended to address limitations imposed by:
 - Technology
 - Budget
 - Schedule
What We Have Learned

1) The National ITS Architecture allows for __tailoring__ at the local level.

2) User services represent what the system will do from the perspective of the __user__.

3) There are four major categories of Transit Management Technologies in the taxonomy
 a) __Fleet Operations and Management__
 b) __Safety and Security__
 c) __Maintenance__
 d) __Data Management__

4) APCs are dependent on __AVL__ and __route and vehicle schedule data__.

5) CARTA tailored the __SEP__ approach to better suit the __scale__ of their organization and the __incremental__ approach used to develop the overall technology program.
Resources

- Carol L. Schweiger*and Santosh Mishra, “Utilizing Archived ITS Data: Opportunities for Public Transport,” 19th ITS World Congress, Vienna, Austria, 22/26 October 2012, Paper Number AM-00078

Resources (cont.)

- NTI course, Systems Engineering for Technology Projects
- ITS PCB T3 Webinars on ITS Transit Standards, http://www.pcb.its.dot.gov/t3_archives.aspx, which includes 14 archived webinars about Transit Management
- EDAPTS: http://www.dot.ca.gov/research/operations/edapts/
Next Course Module

Module 5:
Transit Management Standards, Part 2 of 2
Thank you for completing this module.

Click [here](http://www.pcb.its.dot.gov/standards_training.aspx) to open the feedback form

OR

Please provide us your feedback:

http://www.pcb.its.dot.gov/standards_training.aspx

(insert exact location for feedback for each module as well as link to Transit ITS Standards – page to be developed as part of standards training site)