U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
Module 20:

Application of Arterial Management/Transit Signal Priority Standards
Learning Objectives

Specify and Test a Transit Signal Priority Implementation

Describe how Transit Signal Priority may be provided in a Connected Vehicle Environment

Explain the Role of Transit Signal Priority in Integrated Corridors

Review Case Studies where Standards were Used to Provide Transit Signal Priority
Learning Objective 1

Specify and Test a Transit Signal Priority Implementation
Identify Potential Issues with NTCIP 1211 v02

NTCIP 1211 v02
- National Transportation Communications for ITS Protocol (NTCIP) Object Definitions for Signal Control and Priority

Review
- Priority Request Generator (PRG)
- Priority Request Server (PRS)
- Controller (CO)

Architectures
- The standards support several different architectures
Priority Requests

- Priority Strategy
 - Defines which approaches the requesting vehicle will enter and exit an intersection
 - Required within the priority request
 - The requestor is expected to maintain a database of priority strategies
Priority Requests

- **Vehicle Type**: Could be public safety or transit vehicles

- **Vehicle Class**: A category of vehicle type. For example, bus rapid transit vs express vs local transit service

- Vehicle type and class needs to have an agreed upon **regional definition**
 - Could be an issue for inter-regional vehicles
Identify Potential Issues with NTCIP 1211 v02

Transit Communications Information Profiles (TCIP)
- ITS standard defining standardized interfaces for the exchange of information (data) among transit business systems, subsystems, components, and devices
- Not widely deployed in the United States

Defining system architecture(s) supported is key
- TCIP identifies 5 transit signal priority (TSP) scenarios
- NTCIP 1211 v02 identifies the same 5 system architectures plus one additional
Why Perform Testing?

- To meet a payment milestone
- To **identify errors/bugs** so they can be corrected
- To verify that the system **was built correctly**
 - The system interface must meet the procurement specification and satisfy the requirements (Was the system built right?)
- To validate that **the right system was built**
 - The system interface must satisfy the initial user needs (Was the right system built?)
Test a Standards-Based TSP Implementation
Test a Standards-Based TSP Implementation

Testing Phase
Verification

Ongoing process that builds quality into the system through a systematic approach of verification of requirements – i.e., “you built the system right.”

- **Unit/Device Testing** – e.g., test a standalone PRG, PRS or an interface
- **Subsystem Verification** – e.g., tests a specific interface and its immediate environment, typically under laboratory environment
- **System Verification and Deployment** – e.g., tests the entire transit signal priority system, including the management center software
Validation

- Answers the question: Can I operate the system and satisfy all my stakeholder’s user needs?

- Ensures the requirements and the system are the right solution to the stated problem – i.e., “you built the right system.”

- The system is validated when:
 - Approved by the key stakeholders and agencies
 - All the project requirements are fulfilled
 - Corrective actions have been implemented for any anomalies that have been detected
What are We Testing?

- **Compliance with the procurement specification**
 - Does the system fulfill all the requirements (shall statements) in the procurement specification?

- **Conformance with the standards**
 - Does the system fulfill the requirements selected for the system as specified in the standard?
 - The system must also fulfill other specified (user-selected) requirements of the standards it references.

- Conformance is NOT compliance!
What are We Testing?

Conformance:

- Testing that the **proper protocols** are being used
 - E.g., NTCIP 1103 – NTCIP Transportation Management Protocols
- Testing that the data exchanges occur as defined by the standard
 - Correct **sequence of events and data content** is being exchanged
 - Correct **handling** of error messages
 - Correct **structure** of the data content
How to Test a Standards-Based TSP Implementation

Recall structure of NTCIP 1211 v02

- Defines **user needs**
- Defines **requirements**
- Defines a **single** design for each requirement
How to Test a Standards-Based TSP Implementation

Protocol Requirements List (PRL)

- **Traces** a user need with the requirements that satisfies the user need
- A completed PRL indicates what **features** and **requirements have been selected** for the procurement specification

<table>
<thead>
<tr>
<th>User Need ID</th>
<th>User Need</th>
<th>FR ID</th>
<th>Functional Requirement</th>
<th>Conformance</th>
<th>Support</th>
<th>Additional Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1.2</td>
<td>Determine Priority Request Criteria</td>
<td></td>
<td>M</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1.3.1</td>
<td>Retrieve Priority Request Settings</td>
<td></td>
<td>M</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1.3.2</td>
<td>Retrieve Reservice Period for a Vehicle Class</td>
<td></td>
<td>M</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1.3.3</td>
<td>Retrieve Priority Request Time To Live Value</td>
<td></td>
<td>M</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to Test a Standards-Based TSP Implementation

Requirements Traceability Matrix (RTM)

- Defines the design (dialogs, messages, and data elements) that must be used to fulfill a requirement

<table>
<thead>
<tr>
<th>Requirements Traceability Matrix (RTM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR ID</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>3.5.1.3.1</td>
</tr>
<tr>
<td>3.5.1.3.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
How to Test a Standards-Based TSP Implementation

Requirements to Test Case Traceability Table (RTCTT)

- Traces each requirement selected (in the PRL) to the test case(s) that verifies the requirement is fulfilled
- Indicates the test case(s) that must be passed to fulfill the requirement
- Verifies test case(s) capture testing all requirements at least once

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Test Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 3.5.1.3.1</td>
<td>Retrieve Priority Request Settings</td>
</tr>
<tr>
<td>ID C.1.3.1</td>
<td>Retrieve Priority Request Settings</td>
</tr>
<tr>
<td>ID 3.5.1.3.2</td>
<td>Retrieve Reservice Period for a Vehicle Class</td>
</tr>
<tr>
<td>ID C.1.3.2</td>
<td>Retrieve Reservice Period</td>
</tr>
<tr>
<td>ID C.1.3.3</td>
<td>Retrieve Reserve Period – No Such Class</td>
</tr>
</tbody>
</table>
How to Test a Standards-Based TSP Implementation

Multiple test cases may be needed to completely test a requirement

- Each test case may test a different set of values
- Each test case may test different conditions

Each test case should confirm that the interface:

- performs the same sequence of data exchanges (and events) as defined in the standard
- uses the data concepts (messages, data frames or data elements) indicated in the RTM
ACTIVITY
Which of the following is NOT a reason to perform testing?

Answer Choices

a) To identify bugs or errors so they can be corrected
b) To verify the system fulfills the requirements of the specification
c) To validate the right system was built
d) To check a box that we did it
Review of Answers

a) To identify bugs or errors so they can be corrected
 Incorrect. Testing is performed to find and fix problems

b) To verify the system fulfills the requirements of the specification
 Incorrect. Testing is performed in order to verify that requirements are fulfilled

c) To validate the right system was built
 Incorrect. Testing can be used to verify that the system built satisfies the original user need

d) To check a box that we did it
 Correct! Testing is not done to satisfy a chronological list but completed to ensure that a stable, needed system was created
Learning Objective 2

Describe How Transit Signal Priority May be Provided in a Connected Vehicle Environment
What is a Connected Vehicle Environment?

Vehicles broadcast:

- Current position with other vehicles and the roadway
- Sensor information with other vehicles and the roadway

Vehicles receive information:

- Reduce the likelihood of incidents
- Improve mobility (e.g., reduce delays)

Could be a smartphone on a pedestrian or bicyclist
What is a Connected Vehicle Environment?

Example Vehicle Data
- Latitude and Longitude
- Speed
- Direction
- Turn Signal Status
- Vehicle Length and Width

Example of Infrastructure Data
- Signal Phase and Timing
- Speed limit on roadway
- Estimated Time of Arrival for Transit Vehicle
August 2014, National Highway Traffic Safety Administration (NHTSA) released an **Advance Notice of Proposed Rulemaking (ANRPM)** and a supporting research report

- Federal Motor Vehicle Safety Standard (FMVSS) No. 150, to require vehicle-to-vehicle (V2V) communications capability for light vehicles and to create minimum performance requirements for V2V devices and messages

- V2V and vehicle-to-infrastructure (V2I) systems could potentially address 81% of all vehicle crash types

Notice of Proposed Rulemaking (NPRM) expected in 2016
What is a Connected Vehicle Environment?

- **V2V** communications will open the gates for **V2X**:
 - **V2I** (Vehicle to Infrastructure)
 - **V2P** (Vehicle to Pedestrians)

- Opportunity to use the V2V data being broadcasted and vehicle’s ability to receive wireless data to:
 - Improve **roadway safety**
 - Improve **mobility**
 - Improve the **environment**
What Information is exchanged for TSP in a CV Environment?

SAE J2735: Dedicated Short Range Communications (DSRC) Message Set Dictionary

Defines the dictionary for connected vehicles

- MAP Data Message (MAP)
- Signal Phase and Timing (SPAT)
- Signal Request Message (SRM)
- Signal Status Message (SSM)
- Also specifies data frames and data elements
What Information is exchanged for TSP in a CV Environment?

- **Signal Request Message (SRM)**
 - Broadcast by a vehicle *(On-Board Equipment (OBE))* to infrastructure *(Road-Side Equipment (RSE))*
 - Asks for service, including preemption/priority treatment from one or more signal controllers
What Information is Exchanged For TSP in a CV Environment?

SRM: Mandatory Elements
- Requestor identifier (e.g., vehicle id)
- Request identifier (id of the request)
- Request type (new, update, cancel)
- Lane, approach or connection identifier

SRM: Optional Elements
- Estimated time of arrival
- Estimated duration
- Requestor information (role, vehicle type, priority level)
- Occupancy, schedule adherence information
What Information is exchanged for TSP in a CV Environment?

Signal Status Message (SSM)

- Broadcast by infrastructure to the vehicles/OBEs
- Response to all the signal priority requests received
- Contains:
 - **Identifier of the intersection**
 - **Status of service request(s)** for a specific lane or approach
What Information is exchanged for TSP in a CV Environment?

Example:

1. A transit vehicle approaching a signalized intersection enters the DSRC range
2. The transit vehicle wirelessly broadcasts a SRM, with its ETA and the identifier of the lane to enter and egress out of the intersection
3. The signal controller receives and processes the SRM request
What Information is exchanged for TSP in a CV Environment?

Example:

4. The signal controller provides the RSE with the SSM data so the RSE can broadcast a SSM with the status of all SRM requests received.

5. The RSE broadcasts the SSM. The transit vehicle receives the SSM and travels through the signalized intersection when service is provided.
Which ITS standard defines the messages and data elements for a connected vehicle environment?

Answer Choices

a) NTCIP 1211 v02
b) SAE J2735
c) TCIP
d) NTCIP 1103
Review of Answers

a) NTCIP 1211 v02

Incorrect. NTCIP 1211 v02 supports TSP, but not necessarily for a connected vehicle environment

b) SAE J2735

Correct! SAE J2735 was developed specifically to support a CV environment

c) TCIP

Incorrect. TCIP supports transit business, but not necessarily for a CV environment

d) NTCIP 1103

Incorrect. NTCIP 1103 defines the protocols for managing transportation field devices
Learning Objective 3

Explain the Role of Transit Signal Priority in Integrated Corridors
Optimizes existing transportation infrastructure along a corridor, making transportation investments go further.

Enables travelers to make informed travel decisions and dynamically shift modes during a trip.

Reduces travel time, delays, fuel consumption, emissions and incidents.

Increases travel time reliability and predictability.
Impact of TSP on Integrated Corridor Performance Measures

How can TSP contribute to an ICM?

- Increases transit travel time reliability and predictability
- Can decrease transit travel time, reducing overall delay and making transit more attractive
- Increase capacity of the transit route
- Enforce changes to transit schedules
Examples where TSP contributed to an ICM

- Dallas US 75 ICM
- Minneapolis, MN
Which of the following is not a benefit of using TSP in ICM?

Answer Choices

a) Decrease travel times
b) Improve travel time reliability
c) Improve the quality of transit data collected
d) Improve throughput and use of transit capacity
Review of Answers

a) Decrease travel times
 Incorrect. TSP can decrease travel time

b) Improve travel time reliability
 Incorrect. Travel Time reliability could actually be the most significant benefit of TSP

c) Improve the quality of transit data collected
 Correct! The quality of transit data is unrelated to TSP

d) Improve throughput and use of transit capacity
 Incorrect. TSP can improve throughput as transit is given priority through the arterial network and can contribute to higher usage of the transit system
Review Case Studies Where Standards Were Used to Provide Transit Signal Priority
CASE STUDY
Case Study Example – King County Metro (Seattle)

Introduction

- 6 Bus Rapid Transit corridors
- 2 non-BRT corridors (additional planned)
- Approximately 200 TSP installations
- 13 local partner jurisdictions
System Architecture

- Can operate **any of the 5 TSP scenarios in TCIP**
- The bus initiates the request based on its location and the location of priority intersection approaches.
 - Can be **easily changed, based on route or time-of-day**
 - **Accommodates** complex strategies such as check-in/check-out and near-side stops
- Transit vehicles communicate directly to the Transit Priority Request Generator (TPRG)
Case Study Example – King County Metro (Seattle)

System Architecture

KC Metro Transit ITS Architecture
Connected Vehicle Network

RapidRide ITS Architecture

Central Systems
Backhaul
Roadside IP Network

KC WAN
KC Enterprise Firewall
KC Corridor Router

Intersection
Switch
TPRG
Signal Controller

Mobile Router
4.9GHz WAP
PoE

Passenger Info Sign
SAFTP
Tech Pylon
Transit Vehicle
ITS Standards

- Supports the full TCIP dataset
- Request message: 25 defined fields + 10 user fields. All transmitted, logged, and stored
- Logs phase, PRG action, and priority type
Lessons Learned

- Systems engineering process helpful, especially specifications and testing
- TSP algorithms vary between vendors
- Took advantage of standards
 - Use of **IP/Ethernet standards** made design, implementation, and O&M more **cost-effective**
- High bandwidth communications **do not limit size or frequency of data**
Case Study Example – New York City

Introduction

- 12,400 signalized intersections, nearly all under computer control
- MTA has a fleet of approximately 6,000 buses, approximately 5,000 buses on the street at a time, all with GPS and wireless communications with the transit management center
- Previous trials showed decreases of 15-23% in travel time
Case Study Example – New York City

System Architecture

Traffic Management Center

Traffic Control System

Transit Management Systems

TSP Server

Workstation for Remote Access (reports, status)

Wireless Media

Traffic Controller

GPS

Legend

TSP Control Flow

Traffic Management
Case Study Example – New York City

ITS Standards

- **Already using NTCIP** for communications between the TMC and signal controllers.
- **Adopted NTCIP 1211 with extensions**
 - **NOT** Conformant to NTCIP 1211
 - Priority request: Objects to support latency (absolute time), **vehicle speed**, **vehicle location**, **intersection identifier**, **route identifier**
 - Priority status: **intersection identifier**, **priority response status**
Case Study Example – New York City

Lessons Learned

- Took advantage of **existing communications infrastructure**

- Implementation issues with NTCIP 1211 v01

 - **Communications network latency** has an impact
 - Function of the communications network
 - High latency can impact operations
 - Was addressed in NTCIP 1211 v02

- **Clock source**
 - Can be an issue if the time for a component has a different source (e.g., GPS, Coordinated Universal Time, electrical power grid)
Introduction

Regional Transit Signal Priority Implementation Program (RTSPIP)

- Goal: Develop and implement a regional TSP system for Metropolitan Chicago
- $40 million, with 100 miles of roadway, 400 intersections, 13 arterial corridors and 4 counties
Case Study Example – Chicago

Introduction

Previous demonstrations yielded benefits

- Improved schedule adherence
- Reduced travel time – up 15% reduction
- However, difficult to evaluate performance

Developed Regional Open Standards

- Not tied to a single TSP vendor
- Simplify Operations and Maintenance (O&M)
- Centralized monitoring of TSP activity
Case Study Example – Chicago

System Architecture

Legend
- Existing Components / Data Flows
- New Components / Data Flows

CTA Buses
- Clever Devices AVL
- Wireless Comm. Equipment
- TSP Request

Pace Buses
- Trapeze AVL 608 MHz
- Wireless Comm. Equipment
- TSP Request

V-2-I
Vehicle-to-Intersection Communications

I-2-I
Intersection-to-Intersection Communications
CDOT TSP Corridor Roadside

Wireless Option
CBOX Equipment
Signal Cabinet
TSP / PRS Device
Traffic Signal
Signal Interconnect Fiber / Copper Option

C
Wireless Option
CBOX Equipment
Signal Cabinet
TSP Request + Status

D
TSP Request + Status

E
Master Controller
Traffic Signal

I-2-C
Intersection-to-Center Communications
CDOT TMC

F
Signal Monitoring and Control

CDOT TMC System Administrator

CTA / Pace TSP Management Centers

Remote TSP Monitoring

G
CTA / Pace TSP System Administrators

IDOT / Local DOT TSP Corridor Roadside

Wireless Option
CBOX Equipment
Signal Cabinet
TSP / PRS Device
Traffic Signal
Signal Interconnect Fiber / Copper Option

C
Wireless Option
CBOX Equipment
Signal Cabinet
TSP Request + Status

D
TSP Request + Status

E
Master Controller
Traffic Signal

IDOT / Local DOT TMC

F
Signal Monitoring and Control

IDOT / Local DOT TMC System Administrators

Communications Cables (Fiber / Copper Where Available)
Case Study Example – Chicago

ITS Standards

- Determined stakeholder needs
- Developed **regional message set**
- Based on NTCIP 1211 v01.38 and leveraged SAE J2735_200912
- Updated dialog definitions
- Developed test tools to verify correct usage of data objects
- **Proprietary node** for object extensions
Object Extensions

- priorityRequestVehicleID_chi
- priorityRequestTSPPhaseRequired_chi
- priorityRequestVehicleLatitude_chi
- priorityRequestVehicleLongitude_chi
- priorityRequestAgencyID_chi
- priorityRequestScheduleLateness_chi
- priorityRequestRouteID_chi
- priorityRequestRunNumber_chi
- priorityRequestVehicleOccupancy_chi
Lessons Learned

- Developed a **flexible** system architecture
- Lots of agencies / but cooperation has been great
- Field data is cumbersome but AVL data is promising
- Many traffic signal controllers are dated but testing new Advanced Traffic Controllers
- Intersection-to-Center communication is limited but TSP could help fill some communication gaps
Introduction

Multi-Modal Intelligent Traffic Signal Systems

Goals

- Develop a comprehensive traffic signal system that services multiple modes of transportation in a connected vehicle environment

Two locations

- Arizona Connected Vehicle Test Bed
- California Test Network
Case Study Example – MMITSS

ITS Standards

- Adopted **SAE J2735_200911**
 - SRM and SSM
 - MAP and SPAT
 - Modified SSM to acknowledge receipt of an SRM
- Used **NTCIP 1202** to exchange information between the RSE and the signal controller (with extensions)
Independent analysis found that MMITSS applications effectively:

- Improved **vehicle travel time** and **travel time reliability**
- **Reduced delay** for equipped vehicles (including transit) on the test facility
 - Reduced delay for equipped transit vehicles by **8.2%**
- Opinion of the evaluators: **MMITSS appears to be effective in allowing system managers to allocate and prioritize system capability/mobility but may not always reduce delay or aggregate system performance**
How can ITS standards be used in TSP implementations?

a) Extensions to an ITS standard can be used to satisfy a need not supported by the ITS standards

b) NTCIP 1211 v02, TCIP and SAE J2735 must be used in TSP implementations to conform to TSP standards

c) All messages and objects defined in the standard must be used to conform

d) An implementation is allowed to support only one of the system architectures defined in the standard
Review of Answers

a) Extensions to an ITS standard can be used to satisfy a need not supported by the ITS standards

Correct! The ITS standards allow an implementation to define an extension if the user need is not supported by the standard

b) NTCIP 1211 v02, TCIP and SAE J2735 must be used in TSP implementations to conform to TSP standards

Incorrect. All 3 standards do not need to be used to conform

c) All messages and objects defined in the standard must be used to conform

Incorrect. The standards do not require that all messages and data elements be supported

d) An implementation is allowed to support only one of the system architectures defined in the standard

Incorrect. An implementation may support more than one system architecture defined in a standard, or use a system architecture not defined in the standard
Module Summary

What We Have Learned

1. How to identify requirements that are to be tested and how to test a standards-based TSP implementation.
2. Define what a connected vehicle environment is and what information is exchanged in regards to TSP.
3. Understand and explain the impact of TSP on integrated corridor performance measures.
4. Take away knowledge from each of the case studies reviewed on how to correctly use standards to execute TSP.
Thank you for completing this module.

Feedback
Please use the Feedback link below to provide us with your thoughts and comments about the value of the training.

Thank you!