Civil Design Considerations for ITS Implementations

FEBRUARY 22, 2017
Case Study Format and Purpose

• Case Study Purpose
 • Provide overview of civil design considerations related to Intelligent Transportation Systems (ITS)
 • Explore approaches to integrating ITS components into field settings

• Components
 • 1: Presentation
 • 2: Take Home Exercise
 • 3: Debrief
Exercise Preview

• Topic
 • Develop Camera Location Design for Case Study

• Scenario
 • University Football Stadium traffic congestion
 • Planned events
 • Growing attendance/traffic
 • Stadium expansion
 • City transportation system cannot accommodate demand
 • Functional ITS Architecture previously developed

• Student Role
 • ITS Design Engineer

• Resources
 • Sample plan sheets
Exercise Activities

• Task 1: Siting
 • Identify locations where camera can fulfill functions
 • Consider relative merits of locations

• Task 2: Power
 • Utility coordination
 • Tie to infrastructure or not

• Task 3: Communication
 • Own versus lease
 • Utility coordination

• Task 4: Structures
 • Jurisdictional standards on structures
 • Use of existing structures

• Task 5: Integration and Testing
 • Determine how project completion will be determined
Intelligent Transportation Systems (ITS)

- Use of information and communications technologies to meet transportation needs
ITS Addresses Transportation Needs

• Delivers transportation services that address local needs
• Defines transportation systems and functions needed to deliver services
• ITS does not solve entire transportation problem
 • ITS provides tools to better manage existing transportation conditions and maximize the capacity and capabilities of current facilities
 • ITS enables travelers to be better informed, make safer and smarter use of transportation systems
Intelligent Transportation Systems (ITS) Example

- Traffic Management Center
 - Interacts with devices
 - Dynamic Message Signs (DMSs)
 - Traffic cameras
 - Highway Advisory Radios (HARs)
 - Traffic detection
 - Traffic signals
 - Personal Devices
Local ITS Example
Instructor to modify

- Local Example
 - Visible to students
 - Current developments
 - Recent publicity
 - Innovative technology

 Graphics add interest

 Embedding a video enlivens the lecture
Areas of R & D

• **Connected Vehicles (CV)**
 • DSRC wireless
 • Vehicle-to-vehicle (V2V) in NHTSA rulemaking process
 • Vehicle-to-infrastructure uses roadside devices to reach TMCs and service providers
 • Vehicle-to-everything (V2X) offers communication path to pedestrians, cyclists, others
 • Focused on safety and mobility
 • Cell phone wireless
 • Used existing cellular infrastructure to reach service providers
 • Focused on consumer-driven services
 • “Infotainment”
 • Emergency alerts
Areas of R & D

• Automated Vehicles
 • Removes human driver from control of vehicle
 • Partial automation currently available
 • Automated control with human backup in trials on public roadways
 • Fully autonomous with no manual controls (no brakes or steering wheel) in development
 • Significant safety benefit is possible
 • Based on in-vehicle sensors, actuators, and control logic
 • May be Connected Vehicles also
 • Communication introduces security issues
Putting ITS Together

- ITS has many systems, interactions, and institutions
 - How does it all fit together?
 - How do the various components interact?
 - What can be used to coordinate deployment?

- USDOT defined the National ITS Architecture Guide for ITS deployment planning

- Connected Vehicle Reference Implementation Architecture (CVRIA) incorporates CV concepts
Using Standards

- Standards are published documents that establish specifications to improve reliability and interoperability.
- For ITS, standards:
 - Define an architecture of interrelated systems that work together to deliver transportation services.
 - Are developed in conjunction with Standards Development Organizations (SDOs).
 - Cover a wide array of topics.
 - Interaction among ITS components are aided through standards.
Systems Engineering (SE)

- Systems Engineering (SE) focuses on the “system” as a whole emphasizing its total operation
 - Views the “system” from the outside as well as the inside
 - Concerned about interactions of the “system” with other systems and the environment
 - Foundation of SE is reflecting the user needs from “system” conception through operations and retirement
 - Needs and requirements are traceable through implementation, testing, and evaluation
- SE involves and manages multiple disciplines work together
- SE is an inherent part of project management since it defines a process useful for controlling system cost and schedule
- SE is all about balancing competing needs/constraints
Civil Design in the SE “V”
Civil Design for ITS Deployments

- ITS deployments utilize multiple Civil Engineering specialties
 - Transportation Engineering
 - Roadway design
 - Signage
 - Traffic control devices
 - ITS
 - Structures
 - Power
 - Communications
 - ITS Messaging Standards
 - Utility
 - Hydrology
Typical Preconditions for ITS Projects

• Existing roadway
 • Electronic plan sets frequently available
 • Some scanned plans with field markup, a.k.a. redlines

• Existing signs

• Existing traffic control devices

• Existing cabinets

• Existing conduit plant

• Willingness to reuse existing infrastructure is project dependent

• Nearby power and communications
 • Use of wireless or solar make reliable alternative
Representative Case Study
Camera Capabilities

• Purpose
 • Collect traffic condition information

• What characteristics are required to perform surveillance function?
 • Line of sight
 • Light sensitivity
 • Coverage (Resolution and Pan, Tilt & Zoom (PTZ))
 • Environmental resistance
 • Reliability
 • Power consumption
 • Maintenance access
 • Organizational standards
 • Legacy systems

• Determined prior to civil design
Camera Siting

- Coverage of roadways of interest
 - Line of sight to Interstate
 - Northbound lanes South of Interchange is primary concern
 - Line of sight to arterial
 - At Interchange and East of interchange are primary concerns

- Costs
 - Ability to leverage existing assets
 - Power
 - Communication
 - Structures
Plan Sheet Sample – Plan and Profile

Plan

- Existing plans
- General Information
- Initial site line assessment

Profile
Plan Sheet Sample – Cross Section

- Existing plans
 - Siting
 - Environmental

Runoff and Slope restoration
Structure height
Standing water
Plan Sheet Sample - Intersection

Cabinet Location

Conduit Plant and Usage

Roadway Dimensions

Potential Mounting Structures
Plan Sheet Sample - Interchange

Cabinet Location (if present)

Roadway Dimensions

Traffic Estimates

Potential Mounting Structures (if present)

Conduit Plant and Usage (if present)
Power

• Required to operate electronic devices and communication equipment
 • Need stable, clean power supply

• Plans require coordination with Electrical Engineer

• Most commonly gained from regional power company
 • Distance from existing infrastructure drives costs
 • Possible to use existing power drop from existing cabinet

• Microgrid alternative in some cases
 • Low power application (e.g. unheated camera)
 • Location remote from power infrastructure
 • Adequate insolation or reliable wind

• Some applications require backup power
Communication

• Specific plans required to access all locations with communication need

• All choices must support user needs and requirements
 • Bandwidth
 • Reliability
 • Security

• Extensive range of options available

• Distance from existing infrastructure drives costs for wireline
 • “Last mile” may be different than trunk

• Reuse of existing infrastructure most cost effective
Mounting Structures

- **Existing structure**
 - Major advantage is cost

- **New structure**
 - **Location**
 - Soil condition
 - Protection from traffic
 - **Height**
 - **Strength**
 - **Load of device**
 - **Load of cabinet**
 - **Cabinet mounting**

BORING LOG

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Description of Materials Observed</th>
<th>Sample Block Method</th>
<th>N Value (IP)</th>
<th>Q Value (IP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Brown Silt Clay, trace sand, exist</td>
<td>5.5-6.8</td>
<td>14.53</td>
<td>4.34</td>
</tr>
<tr>
<td>3.0</td>
<td>Brown Silt Clay, same sand, exist</td>
<td>3.0-3.6</td>
<td>18.40</td>
<td>4.04</td>
</tr>
<tr>
<td>4.0</td>
<td>Wet Clay, gravel, exist, trace sand</td>
<td>2.7-7.0</td>
<td>18.30</td>
<td>4.03</td>
</tr>
<tr>
<td>5.5</td>
<td>Wet Clay, gravel, exist, trace sand</td>
<td>2.7-7.0</td>
<td>18.30</td>
<td>4.03</td>
</tr>
<tr>
<td>13.0</td>
<td>Brown Silt Clay, gravel, exist, trace sand</td>
<td>2.7-7.0</td>
<td>18.30</td>
<td>4.03</td>
</tr>
<tr>
<td>19.0</td>
<td>Brown Silt Clay, gravel, exist, trace sand</td>
<td>2.7-7.0</td>
<td>18.30</td>
<td>4.03</td>
</tr>
<tr>
<td>26.5</td>
<td>Brown Silt Clay, gravel, exist, trace sand</td>
<td>2.7-7.0</td>
<td>18.30</td>
<td>4.03</td>
</tr>
<tr>
<td>43.5</td>
<td>Brown Silt Clay, gravel, exist, trace sand</td>
<td>2.7-7.0</td>
<td>18.30</td>
<td>4.03</td>
</tr>
<tr>
<td>50.0</td>
<td>Brown Silt Clay, gravel, exist, trace sand</td>
<td>2.7-7.0</td>
<td>18.30</td>
<td>4.03</td>
</tr>
</tbody>
</table>

END OF BORING

Groundwater Information:
Depth During Drilling: 6' 5" Below
Depth Upon Completion = 8' 2" Below
Channel= 7' 9" Feet
ITS Device Integration and Testing

• Devices must operate to meet requirements

• Testing needs to show device characteristics to integrate with system
 • System compatibility
 • Standards

• Test plans need to be linked back to requirements
 • Testing should be incremental and progressive
 • Frequently test plans for each device and an integrated system test plan need to be developed to test all requirements
Other Issues

• Each agency will have a set of topics that must be addressed
 • Departmental checklists provide most topics

• Representative issues considered include
 • Infrastructure protection
 • External regulations
 • Coordination with other contractors
Infrastructure Protection

• Surge suppression and grounding
 • ITS infrastructure is frequently the tallest object in an area
 • Lightning suppression frequently required
 • Surge suppression is required for all copper leads exiting a cabinet

• Protection from weather
 • Heat
 • Cold
 • Moisture/sunlight

• Infestation

• Physical security

• Electronic security
External Regulations

- Aircraft protection
- Environmental Impact
 - Waterways
 - Endangered species
- Jurisdictional requirements
 - Aesthetics
 - Departmental infrastructure ownership

Architectural Pole

ITS Camera
FAA Notification Results

• Further FAA coordination is required
Coordination with Other Contractors

• DOTs frequently have several concurrent projects impacting a single section of roadway
 • Typical in location with a short construction season
 • Scheduled projects can be included in plans and budgets
 • Emergency work can result in contract changes for impacted projects
• Coordination of access for field work is the most common impact
 • Coordination can be achieved with regular meetings or teleconferences
 • In high-traffic areas, coordination of lane and shoulder closures is required
• Occasionally, projects directly conflict with each other
Local ITS Example
Instructor to modify

• Regional issues
 • Weather
 • Snow
 • Heat/Cold
 • Fog
 • Flooding
 • Business
 • Ports/Commercial vehicle
 • Agriculture
 • Tourism
 • Culture
 • Festivals
 • Religious observance

Graphics add interest
Embedding a video enlivens the lecture
Review and Approval

- Internal review in line with Quality Assurance
- Sign and seal by qualified PE(s)
- Submittal to agency for acceptance
 - Review comment disposition
- Use of a checklist is beneficial
Design Revisions

• Most projects are implemented differently than designed

• Typical revisions during civil construction
 • Existing plan sheets obsolete/inaccurate
 • Unexpected field conditions encountered
 • Design not constructable
 • Design inconsistent with policy

• Impacts range from minor notes to project cancellation
Integration and Testing

• Civil work takes place at bottom of SE “V”

• Test plans and procedures are developed during the design phases

• Testing takes place against project requirements
 • Compliance with each requirement must be demonstrated to complete a project
 • Infrastructure supports functional requirements
 • Infrastructure must meet some maintenance and reliability requirements

• Operation of an unaccepted system is a common, risky practice
Evaluation

• “Reasoned consideration of how well project goals and objectives are being achieved”

• Evaluation initiated early in ITS program
 • Currently written based on SAFETEA-LU in 2005
 • Updated frequently
 • USDOT Evaluation Guidelines online at http://www.its.dot.gov/evaluation/eguide_resource.htm

• Best performed by independent analysts
 • Self-evaluations acceptable in some cases

• Evaluation planning occurs during project planning
ITS Performance Measures for Evaluation

• Identified based upon goals and objectives
• Can be qualitative or quantitative
• Should be easily obtained
 • If MOE not available, less direct surrogates can be collected
• A single project can address multiple goals
 • MOEs should be selected to assess each goal
Moving Forward with ITS

• ITS is a tool for the transportation professional to address transportation problems without physical capacity expansion

• Challenges
 • Institutional diversity and varied needs
 • Technological complexity integrating differing systems and employing advanced capabilities in legacy systems

• Need a common language and tools to advance ITS planning and institutional buy-in
Representative Case Study
Case Study Purpose

• Examine civil design processes related to ITS
• Explore approaches to integrating ITS components into field settings
Take Home Exercise

• Using the information presented in this session and knowledge of structures, design a camera pole for installation near the Interstate interchange with 12th Street North.