USDOT ITS Research Program

May 1, 2012

Shelley Row, Director and Brian Cronin, Team Leader Research
Intelligent Transportation Systems
Joint Program Office, RITA, U.S. DOT
Vision

To research and facilitate a national, multimodal surface transportation system that features a connected transportation environment around vehicles of all types, the infrastructure, and portable devices to serve the public good by leveraging technology to maximize safety, mobility, and environmental performance.

Plan developed with full participation by all surface transportation modal administrations as well as with significant interaction with multi-modal stakeholders.
ITS Research = Multimodal and Connected

- Drivers/Operators
- Maritime
- Vehicles and Fleets
- Wireless Devices
- Infrastructure
- Rail
ITS Strategic Plan – ITS JPO Administered Program
USDOT ITS Strategic Plan 2010 to 2014 Funding Areas

- ITS Multi-modal Research Applications
- ITS Multi-modal Research Technology
- ITS Multi-modal Research – Policy and Stakeholder Engagement
- Short-term Intermodal ITS Research
- ITS Exploratory Research
- ITS Cross-cutting Support
Fully Connected Vehicle

- latitude, longitude, time, heading
- angle, speed, lateral acceleration,
- longitudinal acceleration, yaw rate,
- throttle position, brake status,
- steering angle, headlight status,
- wiper status, external temperature,
- turn signal status, vehicle length,
- vehicle width, vehicle mass,
- bumper height

Image: U.S. DOT
Connected Vehicle ITS Research Program Components

Applications
- **Safety**
 - V2V
 - V2I
 - Safety Pilot
- **Mobility**
 - Real Time Data Capture & Management
 - Dynamic Mobility Applications
- **Environment**
 - AERIS
 - Road Weather Applications

Technology
- Harmonization of International Standards & Architecture
- Human Factors
- Systems Engineering
- Certification
- Test Environments

Policy
- Deployment Scenarios
- Financing & Investment Models
- Operations & Governance
- Institutional Issues
Key Updates on Connected Vehicle Research

- Safety Pilot
- Policy
- V2I Safety
- Data Capture and Management
- Dynamic Mobility Applications
- AERIS
- TestBed
Safety Pilot Objectives

- Generate empirical data for supporting 2013 and 2014 decisions
- Show capability of V2V and V2I applications in a real-world operating environment using multiple vehicle types
- Determine driver acceptance of vehicle-based safety warning systems
Safety Pilot Objectives (cont)

- Assess options for accelerating the safety benefits through aftermarket and retrofit safety devices
- Extend the performance testing of the DSRC technology
- Collect lots of data and make it available for industry-wide use
- Let others leverage the live operating environment
Device Installation Examples
(Passenger vehicles - Drivers’ own vehicles)

Vehicle Awareness Device

Aftermarket Safety Device

Aftermarket Safety Device with Data Acquisition System (DAS)

Data Acquisition from:
- Aftermarket device
- Radar or ranging device(s)
- 4 cameras, microphone
- OEM CAN bus data
- Vehicle motion
- Cell & GPS antennas
Commercial Vehicle Fleets

(3 Integrated Trucks, 16 Retrofits, ~50 VADs)

<table>
<thead>
<tr>
<th>Con-way Freight</th>
<th>Sysco Detroit LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Less-than-truckload carrier (daytime pickup/delivery, nighttime line-haul)</td>
<td>- Food-service products for restaurants, schools, etc.</td>
</tr>
<tr>
<td>- UMTRI/DOT partner in past projects</td>
<td>- Mix of tractors, trailers</td>
</tr>
</tbody>
</table>

![Con-way Freight truck](image1.png)
![Sysco Detroit LLC truck](image2.png)
Transit Vehicle Fleets
(3 Integrated Buses, ~100 Vehicle Awareness Devices)

Ann Arbor Transit Authority
- Operates 67 buses
- Active in national programs

University of Michigan
- Operates 61 buses
- Model deployment area spans two separate campuses with high bus traffic between and within.
Policy Research Focus

- Determine if V2V is feasible to implement
 - Security Needs
 - Functional Requirements
 - Physical/Technical Requirements
 - Operational & Organizational Requirements
 - Financial Sustainability and Responsibility
The V2V/V2I system requires communications media for two critical purposes:

- Secure communications for distribution of certificates and revocation lists to make sure that entities on the system are legitimate users
- Trusted communications for delivering safety application data and messages (and, potentially, other applications and services)
Critical Questions

- Which communications media can support the needs for distributing security certificates? Choices include:
 - Existing Cellular Networks
 - Dedicated Short Range Communications (DSRC)
 - WiFi
 - Vehicle-Based Security Option

- What are advantages and limitations of each?

- How should the organizational functions of security certificate distribution and management be structured?
 - Who should be responsible for them and how should they be funded initially and over time?
Communications Network Options and Analysis to Date

Analyze Data Delivery (Network) Options:
Requirements Definition: Fall 2011
Communications Options Analysis: Winter 2011/12
Business Models Analysis: Spring/Summer 2012
Supportable Operationally – Certificate Management

- **Develop Certificate Management Organizational/Operational Models:**
 - Roles and responsibilities
 - Organizational models

- **Project Schedule:**
 - Options delivered in winter 2011
 - Public meeting held in April 2011 (for organizational analysis and network options – interim analysis for both projects)
 - Prototype testing: June 2012
 - Test Results and Evaluation of Approach: Jan 2013
 - Final Report: July 2013
Supportable Operationally – Financial Models

- All security network options require financing for operational support
 - All public – politically feasible?
 - Public/private partnership – what type of framework?
 - All private – where’s the value?
 - Data
 - Transactions
 - Spectrum
 - Other
V2I Safety

- Enabling Technologies – Working Towards an Integrated V2I Prototype
 - Signal Phase and Timing
 - Positioning
 - Communications
 - Mapping
 - End of 2012

- Applications
 - Broad Concept of Operations with initial apps of Curve Speed Warning, Stop Sign Gap Assist, and Red Light Violation Warning
 - Transit Applications
 - Smart Roadside
 - Working towards launching application development in 2012
Data Capture and Management: Near-term Data Products

- Weather
- IMO
- Test Data Sets
- World Congress Demo
- Related Demonstration Data
- DMA Application Data/Other Tests
- V2V/V2I Test Bed (MI) Archived, Simulated and Real-Time Data Feed
- Saxton Lab (Virginia) Real-Time Data Feed

Available Now: 10/10
03/12: Future Research Data
10/11: Coming Soon
Data Capture and Management – Key Issue

- Assessment of Data Elements in the SAE J2735 - Basic Safety Message
 - What can we do with the Data if delivered only via DSRC (Density of roadside locations to be effective)?
 - What can we do if the data is delivered via other communication media?
 - Are there other critical data elements?
- Do we need to modify the SAE J2735 Probe Data Message Process and do we need to develop a performance criteria standard?
Dynamic Mobility Applications

- 6 Mobility Bundles Selected
- Contracts awarded to develop Concepts of Operations
- Stakeholder Workshops to Gather User Needs in progress
 - EnableATIS – held Dec 8, 2011
 - FRATIS – held Nov 3, 17, 29 and Dec 3, 2011
 - INFLO – held February 8, 2012, in Washington DC
 - R.E.S.C.U.M.E. – TBD
 - M-ISIG – Summer
- Mobility Stakeholder Workshop May 24, 2012 in Washington DC following the ITS America Annual Meeting
AERIS

- Identified Transformative Apps - Eco-Signals, Eco-Lanes, Low Emissions Zones, Support for Alternative Fuel Vehicle operations, Eco-Traveler Information, and Eco-ICM
- Coordinated Nationally and Internationally - Held six webinars (Intro to AERIS, two on State of the Practice Reports, and three on the BAA research results), US/EU Sustainability Working Group (Vienna, Orlando), Japan METI and MLIT
- Developed detailed outlines for each of the transformative Concepts in preparation for development of ConOps for each
- Conducted a public workshop March 14-15 in Washington, DC to further discuss data and other requirements for the TCs
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) Technology Test Bed and Affiliated Interoperable Test Beds

Multiple Locations... One Connected System
Near Term Connected Vehicles What Could I Do

- Review the Recently Released Connected Vehicle System Architecture
- USDOT is Establishing Research Stage Qualified Products Lists for Interoperable: Vehicle Awareness Devices, Aftermarket Safety Devices, and Roadside Equipment
 - Consider Buying Some, Get Engaged, Do Some Research
 - USDOT to post Mobility Research Questions soon
 - Considering additional Challenges using equipment and data

- Stakeholder Input Sessions Attend, Contribute, Lead
 - Dynamic Mobility Applications - May 24, 2012, Washington, DC
 - AERIS – held in March
 - Policy – held in April

- Updated Connected Vehicle Testbed coming soon
Other Currently Funded Research Programs

- Integrated Corridor Management
- Mobility Services for All Americans
- Congestion Initiative
- Rural Safety Initiative
- Active Traffic and Demand Management
- CVISN
- International Border Crossings
- Technology Options for Collecting Transportation User Fees
- Heavy Rail Communications Assessment
- Cybersecurity Assessment
- Vehicle Automation Assessment
- Electric Vehicles and the Connected Vehicle Assessment
Longer Term Research Gaps

- Automated Vehicles –
 - What “level of automation” is appropriate?
 - How do we leverage connected vehicles?
 - Liability, policy, State of Technology, Deployment Schemes
 - TRB ITS Committee and Automated Highway Systems Committee summer meeting July 25 to 27
- AERIS / Electric Vehicles
 - How to leverage the Smart Grid and the connected vehicle system?
 - What data is shared?
 - What is the relationship between Connected Vehicles, the Smart Grid and the Cloud?
 - Are there modeling techniques which merge the power demands of an electric vehicle fleet and the power generation capacity and management of the SmartGrid
- Decision Support Systems – Using the Data for Operations Management
 - How to data mine crowd sourced data from apps like Waze and bring them into a TMC environment
- Economic analysis of the value of privacy with respect to travel. Analysis could begin on Pay As You Drive (PAYD).