Sustainable Urban Traffic Management using Advanced Technologies

Yashar Zeinali Farid, Farnoush Khalighi
Eleni Christofa, PhD
Civil and Environmental Engineering
University of Massachusetts Amherst

T3e Webinar, ITS PCB Program
The Volpe National Transportation Systems Center

May 26, 2016
Eleni Christofa, Assistant Professor

Expertise:
Intelligent Transportation Systems
Public Transportation Systems
Traffic Operations and Control

Interests:
• Sustainable management of multimodal transportation systems
• Use of innovative technologies to better monitor and manage traffic operations for multimodal transportation systems
• Improve transit operations without excessively compromising car and pedestrian traffic operations
• Innovative intersection designs and their impact on safety and emissions
Presenter Introduction

Yashar Zeinali Farid, PhD Candidate

- **Research Interests:**
 - Intelligent Transportation Systems
 - Transportation Demand Modeling
 - Transportation Systems Analysis
 - Simulation-based analysis of transportation systems

- **Dissertation title:**
 Transit Preferential Treatments at Signalized Intersections: Person evaluation and Real-time Control

- **Honors/Awards:**
 - IRF Road Scholar Award, 2013
Presenter Introduction

Farnoush Khalighi, PhD Student

- **Research Interests:**
 - Sustainable signal control strategies
 - Public transportation
 - Emission modeling
 - Traffic flow theory and operations

- **Dissertation title:**
 Signal Control and Design for Improved Person Mobility and Air Quality in Urban Multimodal Transportation Systems

- **Honors/Awards:**
 - Claire Barrett Memorial Scholarship, WTS Boston, 2015
 - 2nd position for best poster at the 16th Annual UMass Technical Day & Student Research Symposium, 2015
The Center includes:

- Regional Traveler Information Center (RTIC)
- Local Technical Assistance Program (LTAP)
- Transportation Training Institute (TTI)
- Cooperative Research Program
- UMass Traffic Research Safety Program (UMassSafe)
- Aviation Center
- University Transportation Centers (UTC)
 - New England UTC (Region I)
 - Safety Research Using Simulation (SAFERSIM)
 - Tier I Crash-Imminent Safety UTC
The UMass Amherst Transportation Engineering Program

- 5 research active faculty in transportation engineering (+1)
 - Traffic operations and control
 - Public transportation
 - Systems analysis
 - Transportation safety
 - Human factors
 - Air traffic modeling and control

- Variety of courses that include elements of ITS
 - Intelligent Transportation Systems
 - Public Transportation Systems
 - Transportation Sustainability
 - Traffic Flow Theory and Simulation I & II
Outline

1. *Real-time queue spillback control using Connected Vehicle data*
2. *Person-based evaluation of transit preferential treatments*
3. *Real-time emission-based signal timing optimization*

Source: busimages.blogspot.com

Source: safercar.gov
Motivation
Motivation

Source: busimages.blogspot.com
1. Arterial Queue Spillback Detection and Signal Control Based on Connected Vehicle Technology

Research Objectives

- Develop methods for detecting the occurrence of a spillback on a signalized arterial using only Connected Vehicle data.

- Design a real-time signal control strategy to prevent the occurrence of spillbacks using only Connected Vehicle data.

Source: US DOT
Gap-based potential queue spillback detection

\[X = \frac{4}{K_i} \]

Unequipped vehicles

Equipped vehicles
Shockwave-based potential queue spillback detection
Real-time Signal Control Strategy to avoid Queue Spillbacks
Test Site: Four-intersection segment of San Pablo Avenue

San Pablo Avenue
Dwight Way

604 m (1980 ft)

Allston Way

159 m (520 ft)

Addison Street

137 m (450 ft)

University Avenue

Critical intersection

N
Spillback Detection Results: Gap-based
Spillback Detection Results: Shockwave-based
Real-time Signal Control Strategy Results

<table>
<thead>
<tr>
<th></th>
<th>Average Delay (sec/veh)</th>
<th>Maximum Queue Length (veh)</th>
<th>Number of Stops (per veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Signal Settings</td>
<td>40.12</td>
<td>14.42</td>
<td>1.00</td>
</tr>
<tr>
<td>$p = 10%$</td>
<td>40.81</td>
<td>14.80</td>
<td>1.01</td>
</tr>
<tr>
<td>$p = 20%$</td>
<td>39.59</td>
<td>14.63</td>
<td>0.95</td>
</tr>
<tr>
<td>$p = 50%$</td>
<td>36.86</td>
<td>14.27</td>
<td>0.88</td>
</tr>
<tr>
<td>$p = 75%$</td>
<td>36.70</td>
<td>13.67</td>
<td>0.88</td>
</tr>
<tr>
<td>$p = 100%$</td>
<td>36.19</td>
<td>13.90</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Real-time Signal Control Strategy Results

<table>
<thead>
<tr>
<th></th>
<th>Travel Time (sec/veh)</th>
<th>Number of Stops (per veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northbound direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Signal Settings</td>
<td>116.54</td>
<td>1.52</td>
</tr>
<tr>
<td>(p = 10%)</td>
<td>154.23</td>
<td>2.27</td>
</tr>
<tr>
<td>(p = 20%)</td>
<td>134.25</td>
<td>1.85</td>
</tr>
<tr>
<td>(p = 50%)</td>
<td>124.85</td>
<td>1.64</td>
</tr>
<tr>
<td>(p = 75%)</td>
<td>123.03</td>
<td>1.63</td>
</tr>
<tr>
<td>(p = 100%)</td>
<td>120.39</td>
<td>1.58</td>
</tr>
<tr>
<td>Southbound direction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Signal Settings</td>
<td>86.02</td>
<td>0.74</td>
</tr>
<tr>
<td>(p = 10%)</td>
<td>101.03</td>
<td>1.05</td>
</tr>
<tr>
<td>(p = 20%)</td>
<td>95.41</td>
<td>0.92</td>
</tr>
<tr>
<td>(p = 50%)</td>
<td>92.13</td>
<td>0.84</td>
</tr>
<tr>
<td>(p = 75%)</td>
<td>92.12</td>
<td>0.85</td>
</tr>
<tr>
<td>(p = 100%)</td>
<td>92.96</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Findings

• Both methods result to correct detection of the spillback in more than 80% of the cycles for CV penetration rates higher than 20%.

• The shockwave-based detection method is more effective for CV penetration rates as low as 10-20%.

• For high CV penetration rates the signal control strategy can effectively reduce the maximum queue length at the critical link and therefore, result in avoidance of queue spillbacks and a reduction in the delay for the cross-street traffic.

• For low CV penetration rates the signal control strategy may be triggered inconsistently and result to worse performance for the critical link and the whole arterial.