Energy-Efficient Adaptive Cruise Control for Electric Connected and Autonomous Vehicles

USDOT T3e Webinar

Hosted by Dr. Jing Dong
Presented by Liang Hu and Chaoru Lu
IOWA STATE UNIVERSITY
Institute for Transportation

- Focal point for transportation research
- 49 faculty, 257 students from 11 departments across ISU
- Collaborative culture and structure
- Innovation in streaming data, analytics, and decision support tools
Outline

- Introduction
- Fuel and Energy consumption model
- Adaptive cruise control
- Simulation
- Conclusion
Introduction

- In the United States, the fuel economy of personal vehicles is estimated as 24.7 miles per gallon (mpg) in 2016 and is projected to be 54.5 mpg in 2025.

- Battery electric vehicle
 - High energy efficiency
 - Zero tailpipe emissions

- Driver behavior could also affect the fuel economy of vehicles by 10~40%
Introduction

For ICEV

- Smoother deceleration and acceleration rate leads to better fuel efficiency \((Wu \ et \ al. \ 2015)\).
- ACC-equipped vehicle decreased the emissions \((Ioannou \ and \ Stefanovic \ 2005)\)

For BEV

- Ability to recover energy while braking using a regenerative braking system \((Fiori \ et \ al. \ 2016)\)
Introduction

Lead vehicle

Car-following models

On-road fuel/energy economy data

Fuel/Energy consumption models

Velocity & Acceleration

Energy efficiency
Energy Consumption Models

- ICEV fuel consumption model
 - a linear regression model, taking speed & acceleration as predictors
 - there is an optimal speed range for fuel consumption

- BEV energy consumption model
 - braking regenerates electricity
 - energy consumption increases with speed

- Different ACCs for ICEVs and BEVs are needed
ICEV Fuel Consumption Model

- Calibrated the VT-Micro model (Ahn et al., 2002), which uses speed (v) & acceleration (a) to estimate vehicle fuel consumption
- Used on-board diagnostics II (OBD-II) data, e.g. speed, acceleration, and fuel consumption rate, collected from a gasoline car for a year

\[
\ln FC = \sum_{i=0}^{3} \sum_{j=0}^{3} L_{i,j} v^i a^j, \quad \text{if } a \geq 0
\]

\[
\ln FC = \sum_{i=0}^{3} \sum_{j=0}^{3} M_{i,j} v^i a^j, \quad \text{if } a < 0
\]
ICEV Fuel Consumption Model

- Validated the model on the trip basis
- Compared the actual trip fuel consumption with the estimated trip fuel consumption
BEV Energy Consumption Model

- The regenerative braking feature of electric motors: kinetic energy converts to electricity during braking
- Vehicle specific power (VSP) < 0, when regenerative braking takes effect

If maintain the deceleration at high energy efficiency range for a long time period, BEVs are likely more energy efficient.

(Fiori et al., 2016)
BEV Energy Consumption Model

- EV energy consumption is more sensitive to ambient temperature \((\text{Dong and Hu, 2017; Greene et al., 2017})\)
- Ambient temperature influences auxiliaries, e.g. air conditioning; Auxiliaries consume considerable electricity
- There is an optimal temperature for energy consumption, e.g., 20 °C (or 68 F)
BEV Energy Consumption Model

- Use VSP and auxiliary power to estimate energy consumption rate (ECR)
 \[
 ECR = h_0 + h_1 VSP + h_2 P_{aux}
 \]
- Result in better estimation than other models, e.g. Yang et al., 2014 and Yao et al., 2014

<table>
<thead>
<tr>
<th>Energy Consumption Models</th>
<th>MAPE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed model</td>
<td>13.3%</td>
<td>0.296 kWh</td>
</tr>
<tr>
<td>Yao’s model</td>
<td>19.5%</td>
<td>0.495 kWh</td>
</tr>
<tr>
<td>Yang et al.’s model</td>
<td>16.7%</td>
<td>0.511 kWh</td>
</tr>
</tbody>
</table>
Car-Following Models

- Human-driver models
 - Newell Model
 - Gipps Model
 - Optimal Velocity Model
 - Intelligent Driver Model

- Adaptive cruise control
 - Adaptive cruise control based on IDM (IDM-ACC)
 - Nissan Model
Adaptive Cruise Control

Source: https://res.cloudinary.com/engineering-com/image/upload/w_640,h_640,c_limit/Driverless_Car_Tech_2_zabzmt.jpg
Proposed Adaptive Cruise Control

Assumptions:

- Only CAVs are capable of communicating with other CAVs through V2V communication

- Ignore computational, sensor, and communication delays for CAVs
Platoon with Mixed CAV and Human-Driven Vehicles
Adaptive Cruise Control

- Gasoline-CAV
 Ecological Smart Driver Model (Eco-SDM)

- e-CAV
 Energy-Efficient Electric Driving Model (E^3DM)
String Stability (Acceleration profiles)

Comparison of ACCs

Nissan

Eco-SDM

IDM

E3DM
Simulation

- traffic stream with 1000 vehicles
- a single lane
- the platoon size ranges from 14 to 81 vehicles
Lead vehicle follows a driving cycle

- **Urban Dynamometer Driving Schedule (UDDS)**
 - city test
 - distance: 12 km
 - length: 1369 sec
 - average speed: 31.5 km/h
Scenario 1: All Gasoline-CAVs

The graph shows the fuel consumption (L) for different positions of the following vehicles:

- Manual
- IDM-ACC
- Nissan-ACC
- Eco-SDM

The y-axis represents fuel consumption (L) ranging from 0.92 to 1.16, and the x-axis represents the position of the vehicles from 2 to 16.
Scenario 2: One CAV at different position

![Graph showing fleet fuel consumption change with different CAV positions. The x-axis represents the location of the CAV (2 to 16), while the y-axis shows the fleet fuel consumption change from -2.5% to 0.5%. Three different lines represent IDM-ACC (orange), Nissan-ACC (gray), and Eco-SDM (blue).]
Scenario 3: Different % of CAVs

Eco-SDM — Nissan-ACC — IDM-ACC

Market penetration of CAVs

Fleet fuel consumption change

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Scenario 4: All e-CAVs

Energy consumption (kWh) vs. Position of the following vehicles

- Manual
- IDM-ACC
- Nissan-ACC
- E³DM
Scenario 5: One e-CAV at different position
Scenario 6: Different % of e-CAVs

![Graph showing energy consumption change vs market penetration of e-CAVs]

- IDM-ACC
- Nissan-ACC
- E³DM
Conclusion

- Gasoline vehicles
 - a CAV fleet consumes less fuel than a manual vehicle fleet;
 - 1 CAV at the front of a mixed fleet has larger impacts on the fleet fuel efficiency;
 - higher % of CAV leads to more fuel savings, but the marginal benefit diminishes after about 30%.
Conclusion

- Electric vehicles
 - a \(E^3 \)DM-equipped CAV fleet consumes less energy than a manual vehicle fleet;
 - 1 e-CAV at the front of a mixed fleet has larger impacts on the energy efficiency;
 - The higher % of e-CAVs may not result in better energy efficiency of the entire fleet.
 - With \(E^3 \)DM, the highest fleet-level energy efficiency is achieved when the market penetration of e-CAVs is 20%.
Thank you

Corresponding author:
Dr. Jing Dong
jingdong@iastate.edu
Reference

