BACKGROUND

- Problem Statement
 - Increased pedestrian fatalities.
 - V2P technologies designed to improve pedestrian safety.
 - Need for reliable approach to testing V2P system effectiveness.

- This project aimed to develop a generic assessment plan and V2P Test Bed to investigate the effectiveness of emerging V2P systems.
Outlines:

- Crash Trends.
- Available V2P Systems.
- Assessment Plan and V2P Test Bed.
- Findings and Suggestions.
Pedestrian and Bicyclist Fatalities (2007-2016)

Source: National Highway Traffic Safety Administration (NHTSA)
Factors known to increase risk of crashes:
- Environmental conditions (weather, lighting, and road surface).
- Infrastructure (road geometry, grade, crowded urban settings, and traffic control).
- Driver behavior-related (avoidance maneuver and speed).
- Road user characteristics (driver/pedestrian impairment, and distraction).
Proven solutions:
- Road diets.
- Medians, islands, and crossing refuge.
- Improved signal timing.
- Pedestrian crossing infrastructure such as Rectangular Rapid Flashing Beacon (RRFB) Pedestrian Hybrid Beacon (PHB).
- Reduced speed limits.

Connected Vehicle technology presents opportunities for new pedestrian safety applications.
V2P SYSTEMS

Vehicle-to-Pedestrian

- Detect at-risk pedestrians through external sensors.
 - May alert driver or pedestrian, and/or intervene driver to reduce crash risk or severity.

- Types of sensors include:
 - Optical camera/computer vision.
 - Direct wireless communications.
 - Radar.
 - Light detection and ranging (LiDAR).
PROJECT GOALS

- Establish a Test Bed for emerging V2P technologies at Turner-Fairbank Highway Research Center (TFHRC).

- Assess variety of V2P systems and document effectiveness.
INITIAL PHASE/PHASE I

2013 – 2016

Technology Scan:
- Identified 86 known V2P technologies.
- Very few mature, market-ready, and publicly accessible products.

Research Implementation Plan:
- Identified gaps and research needs for improving pedestrian safety.

Phase I Goal:
- Develop a test plan strategy and identify V2P systems currently available on the consumer market.
US DOT V2P TECHNICAL SCAN SUMMARY

<table>
<thead>
<tr>
<th>Approach Number</th>
<th>Author / Manufacturer</th>
<th>Detection Method</th>
<th>Notification Method</th>
<th>Intervention Method</th>
<th>Stage of Development / Implementation</th>
<th>Time To Marketability (Estimated)</th>
<th>Technical Information Available</th>
<th>Cost Value (see individual sheets for specific information)</th>
<th>Crash Location: Unknown</th>
<th>Internal Overview: Unknown</th>
<th>Crash Reason: Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Honda</td>
<td>DSRC</td>
<td>Audible and Visual</td>
<td>None</td>
<td>R&D Pre-Production</td>
<td>Unknown</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>Dingus, Jahangiri, Rakha</td>
<td>Mobile pinging</td>
<td>Mobile Phone Alert</td>
<td>None</td>
<td>R&D Concept</td>
<td>Unknown</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>Luo, Remillard, Hoetzer</td>
<td>Infrared</td>
<td>Visual</td>
<td>None</td>
<td>Field Tested</td>
<td>Unknown</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>Nissan</td>
<td>Mobile pinging</td>
<td>Audible and Visual</td>
<td>None</td>
<td>R&D Concept</td>
<td>Unknown</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>Federal Highway Administration</td>
<td>Camera</td>
<td>Visual</td>
<td>None</td>
<td>Field Tested</td>
<td>Unknown</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>Huang, Yang, Eklund</td>
<td>Motion sensors</td>
<td>Not Specified</td>
<td>None</td>
<td>Simulations</td>
<td>Unknown</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>7</td>
<td>Gerónimo, Sappa, Ponsa, López</td>
<td>Camera</td>
<td>Visual</td>
<td>None</td>
<td>R&D Concept</td>
<td>Unknown</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Free Download:
PHASE I:
Assessment Plan

- Developed from common V2P features:
 - Technology accuracy.
 - Reliability.
 - Safety features.
 - Market readiness.
 - Accessibility.

- Identified four scenarios common to vehicle-pedestrian collisions:
 - STRAIGHT
 - PARALLEL
 - LEFT TURN
 - RIGHT TURN
PHASE II
2017 – PRESENT

- **Goal:** Use market-ready V2P systems to validate the test plan strategy from Phase I using the TFHRC V2P Test Bed.

- **Eligibility Criteria for Testing:**
 - Perform in at least 1 of the 4 test case scenarios.
 - Deliver measurable communication output to driver/vehicle or pedestrian/bicyclist.
 - Function within the environment provided (TFHRC or offsite).
PHASE II: Testing

- Three speeds: 10, 15, and 20 mph.
- Two locations at TFHRC V2P Test Bed:
 - Marked, signalized smart intersection with pedestrian crosswalks and pedestrian signal.
 - Marked mid-block crossing.
V2P TEST BED

TFHRC

- **Features:**
 - Variable speed.
 - Traffic and pedestrian volume control.
 - Signalized Smart intersection with pedestrian crosswalks.
 - Marked mid-block crosswalk.
 - Varying roadway curvature and grade.
 - Testing in different times of day and year.

CCTV: Closed-circuit television
RSU: Roadside unit
SPaT: Signal phase and timing
PHASE II: V2P Systems

- **Vehicle-Based**
 - **System 1: Camera-Based Aftermarket Safety Device.**
 - Equipment: Commercially available; installed in test vehicle.
 - **System 2: Camera- and Radar-Based Detection System.**
 - Equipment: Original equipment manufacturer (OEM).

- **Smartphone-Based**
 - **System 3: Smartphone-Based Pedestrian-to-Infrastructure Application.**
 - Equipment: Hardware, early-deployment software; installed at TFHRC.

- **Infrastructure-Based**
 - **Technology: Looking Forward.**
 - LiDAR-Based Pedestrian Detection.
SYSTEM 1:

Camera-Based Aftermarket Safety Device

- Forward-facing single-lens optical camera.
- Windshield-mounted driver interface.
- Driver notified via audiovisual alert.

Cautionary Alert Emergency Alert
SYSTEM 1:

Camera-Based Aftermarket Safety Device

<table>
<thead>
<tr>
<th>Location</th>
<th>Vehicle: Straight</th>
<th>Pedestrian: Perpendicular</th>
<th>Vehicle: Straight</th>
<th>Pedestrian: Parallel</th>
<th>Number of trials per speed per location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marked intersection</td>
<td>X</td>
<td>Marked intersection</td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>Pedestrian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marked mid-block</td>
<td>X</td>
<td>Marked mid-block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicyclist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
SYSTEM 1: Camera-Based Aftermarket Safety Device

- Reliable detection and alerts:

<table>
<thead>
<tr>
<th>Drivers stopped average distance</th>
<th>TTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>5–10 ft</td>
</tr>
<tr>
<td>Bicyclist</td>
<td>5–10 ft</td>
</tr>
</tbody>
</table>

- Potential effect of roadway geometry:
 - Hills, gradations influenced detection.
SYSTEM 2: Camera- and Radar-Based Detection System

- Integrated with vehicle.
 - Radar and single-lens camera sensor.
 - Audiovisual dashboard alert.

- Assisted braking.
 - Supplemental braking.
 - Full automated braking.

- Pedestrian and bicyclist.
 - 10 trials at each speed.
 - Marked intersection only.
SYSTEM 2: Camera- and Radar-Based Detection System

- **Pedestrian:**
 - Reliable detection and alerts.
 - Generally earlier alerts at higher speeds.
 - Average stopping distance 5–10 ft; TTC 0.3–0.6 s.

- **Bicyclist:**
 - Less reliable detection and alerts.
 - Fewest alerts in 20 mph trials.
 - Average stopping distance 3–11 ft; TTC 0.3–0.6 s.

- **Intuitive and effective automated braking.**
 - More often deployed at higher speeds.

- **Detection limited by roadway elevation, curvature, and clothing contrast.**
SYSTEM 3:

Smartphone-Based Pedestrian-to-Infrastructure (P2I) Application

- Communicates with infrastructure to activate existing pedestrian crossing signal.
- Uses location estimation and geo-fencing to identify true location of crosswalk.
SYSTEM 3: SMARTPHONE-BASED P2I APPLICATION

- Relays pedestrian signal information with visual, haptic, text, and auditory messages.
 - Haptic information notifies user of misalignment with crosswalk during crossing.
SYSTEM 3: SMARTPHONE-BASED P2I APPLICATION

- Tested at 4 marked intersection crossings.
 - 10 trials per crosswalk, 5 in either direction.

- Reliable detection and accurate traffic signal status.
 - Lag between signal head and app.
 - Orientation sometimes misaligned with crosswalk.

- Further development for special populations and connected roadways.
 - Applications for pedestrians with visual and physical impairments.
 - Additional feature communicates pedestrian presence to nearby vehicles with OBU.
SYSTEM 4:

LiDAR-Based Pedestrian Detection

- Capable of automatic object detection, classification, and tracking.
 - Longer sensor range than most radars.
 - Constant scanning.
 - Susceptible to LiDAR shadows and obstruction by other objects.
 - High cost; redundant units needed for full coverage.

- Proposed for active traffic management systems and enforcement.
 - Potential to automatically trigger pedestrian signals or send alerts to equipped vehicles via RSU.
 - Potential to serve greater number of users being infrastructure-based.
OVERALL TECHNOLOGY SUMMARY

- Established a viable, adaptive V2P Test Bed at TFHRC.
 - Suited to variety of technologies and systems.

- Developed and implemented flexible test plan strategy.
 - Investigated multiple factors related to usability and effectiveness.

- Identified advantages and disadvantages of different technologies.
OVERALL TECHNOLOGY SUMMARY

<table>
<thead>
<tr>
<th>Systems</th>
<th>Accessibility</th>
<th>Effectiveness</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera-Based</td>
<td>Inexpensive; aftermarket; anyone can procure through certified vendors; compatible with most vehicle models</td>
<td>Older/intoxicated pedestrians Distracted driver Crowded urban settings</td>
<td>Speed <31 MPH Light & weather Road Grade Road curvature</td>
</tr>
<tr>
<td>Camera- and Radar-Based</td>
<td>Increasingly common in newer models; inexpensive; intuitive; integrated with vehicle systems</td>
<td>Older/intoxicated pedestrian Distracted driver Low light (limited)</td>
<td>Speed 7-50 MPH Weather Road Grade Road curvature</td>
</tr>
<tr>
<td>Smartphone-Based</td>
<td>Free smartphone download; designed for people with disabilities</td>
<td>Low Light Road Grade Road curvature Crowded urban settings Mobility-impaired pedestrians</td>
<td>Smartphone Data/server connection Infrastructure</td>
</tr>
<tr>
<td>Infrastructure-Based</td>
<td>All users at equipped location; independent of pedestrian state/action; possible communication with equipped vehicles</td>
<td>Requires additional testing</td>
<td>Multiple expensive units Connected infrastructure/vehicle</td>
</tr>
</tbody>
</table>
OVERALL TECHNOLOGY SUMMARY

<table>
<thead>
<tr>
<th>Systems</th>
<th>Accessibility</th>
<th>Effectiveness</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera-Based</td>
<td>Inexpensive; aftermarket; anyone can procure through certified vendors; compatible with most vehicle models</td>
<td>Older/intoxicated pedestrians</td>
<td>Speed <31 MPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distracted driver</td>
<td>Light & weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crowded urban settings</td>
<td>Road Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Road curvature</td>
</tr>
<tr>
<td>Camera- and Radar-Based</td>
<td>Increasingly common in newer models; inexpensive; intuitive; integrated with vehicle systems</td>
<td>Older/intoxicated pedestrian</td>
<td>Speed 7-50 MPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distracted driver</td>
<td>Weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low light (limited)</td>
<td>Road Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Road curvature</td>
</tr>
<tr>
<td>Smartphone-Based</td>
<td>Free smartphone download; designed for people with disabilities</td>
<td>Low Light</td>
<td>Smartphone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Grade</td>
<td>Data/server connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road curvature</td>
<td>Infrastructure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crowded urban settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mobility-impaired pedestrians</td>
<td></td>
</tr>
<tr>
<td>Infrastructure-Based</td>
<td>All users at equipped location; independent of pedestrian state/action; possible communication with equipped vehicles</td>
<td>Requires additional testing</td>
<td>Multiple expensive units</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connected infrastructure/vehicle</td>
</tr>
</tbody>
</table>
OVERALL TECHNOLOGY SUMMARY

<table>
<thead>
<tr>
<th>Systems</th>
<th>Accessibility</th>
<th>Effectiveness</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera-Based</td>
<td>Inexpensive; aftermarket; anyone can procure through certified vendors; compatible with most vehicle models</td>
<td>Older/intoxicated pedestrians Distracted driver Crowded urban settings</td>
<td>Speed <31 MPH Light & weather Road Grade Road curvature</td>
</tr>
<tr>
<td>Camera- and Radar-Based</td>
<td>Increasingly common in newer models; inexpensive; intuitive; integrated with vehicle systems</td>
<td>Older/intoxicated pedestrian Distracted driver Low light (limited)</td>
<td>Speed 7-50 MPH Weather Road Grade Road curvature</td>
</tr>
<tr>
<td>Smartphone-Based</td>
<td>Free smartphone download; designed for people with disabilities</td>
<td>Low Light Road Grade Road curvature Crowded urban settings Mobility-impaired pedestrians</td>
<td>Smartphone Data/server connection Infrastructure</td>
</tr>
<tr>
<td>Infrastructure-Based</td>
<td>All users at equipped location; independent of pedestrian state/action; possible communication with equipped vehicles</td>
<td>Requires additional testing</td>
<td>Multiple expensive units Connected infrastructure/vehicle</td>
</tr>
</tbody>
</table>
OVERALL TECHNOLOGY SUMMARY

<table>
<thead>
<tr>
<th>Systems</th>
<th>Accessibility</th>
<th>Effectiveness</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera-Based</td>
<td>Inexpensive; aftermarket; anyone can procure through certified vendors; compatible with most vehicle models</td>
<td>Older/intoxicated pedestrians</td>
<td>Speed <31 MPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distracted driver</td>
<td>Light & weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crowded urban settings</td>
<td>Road Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Road curvature</td>
</tr>
<tr>
<td>Camera- and Radar-Based</td>
<td>Increasingly common in newer models; inexpensive; intuitive; integrated with vehicle systems</td>
<td>Older/intoxicated pedestrian</td>
<td>Speed 7-50 MPH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distracted driver</td>
<td>Weather</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low light (limited)</td>
<td>Road Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Road curvature</td>
</tr>
<tr>
<td>Smartphone-Based</td>
<td>Free smartphone download; designed for people with disabilities</td>
<td>Low Light</td>
<td>Smartphone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road Grade</td>
<td>Data/server connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road curvature</td>
<td>Infrastructure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crowded urban settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mobility-impaired pedestrians</td>
</tr>
<tr>
<td>Infrastructure-Based</td>
<td>All users at equipped location; independent of pedestrian state/action; possible communication with equipped vehicles</td>
<td>Requires additional testing</td>
<td>Multiple expensive units</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connected infrastructure/vehicle</td>
</tr>
</tbody>
</table>
Looking Ahead….

- Document strengths and weaknesses of existing V2P technologies.
- Provide suggestions for the development of future pedestrian safety applications to maximize road user safety and mobility.
- Solicit feedback from stakeholders.
- Document techniques and technology features best suited for continued testing at the TFHRC V2P Test Bed.
- Explore effectiveness of the FHWA Smartphone-Based Mid-Block Pedestrian Crossing In-Vehicle Warning Application.