Signal Timing Optimization for Improved Mobility and Air Quality

Farnoush Khalighi¹, PhD
Eleni Christofa², PhD

¹Aimsun Inc.
²Civil and Environmental Engineering, UMass Amherst

T3e Webinar, ITS PCB Program
The Volpe National Transportation Systems Center

April 10, 2019
Eleni Christofa, Assistant Professor, CEE, UMass

Sustainable Multimodal Transportation Systems

Modeling Demand & Supply
- Mode Choice Modeling
- Traffic Flow Theory
- Simulation

Design & Management of Multimodal Systems
- Bicycle Infrastructure
- Innovative Intersection Designs
- Traffic Signal Control

Performance Measures
- Safety
- Environment
- Equity
- Public Health
- Person Mobility
Farnoush Khalighi, Transportation Modeler, Aimsun, Inc.

- **Research Interests:**
 - Traffic operations and control
 - Sustainable traffic management
 - Intelligent transportation systems
 - Environmental impacts of transportation

- **Dissertation title:**
 Signal Control and Design for Improved Person Mobility and Air Quality in Urban Multimodal Transportation Systems

- **Honors/Awards:**
 - Claire Barrett Memorial Scholarship, WTS Boston, 2015
 - 2nd position for best poster at the 16th Annual UMass Technical Day & Student Research Symposium, 2015
The UMass Amherst Transportation Engineering Program

- 7 research active faculty in transportation engineering
 - Traffic operations and control
 - Public transportation
 - Systems analysis
 - Transportation safety
 - Human factors
 - Air traffic modeling and control
 - Asset Management

- Variety of courses that include elements of ITS
 - Intelligent Transportation Systems
 - Public Transportation Systems
 - Transportation Sustainability
 - Traffic Flow Theory and Simulation I & II
University of Massachusetts Transportation Center, UMTC

Focus
To Improve Transportation Mobility & Safety using Innovative Technologies and Strategies
Motivation

- Growing traffic congestion
- High levels of transportation-related air pollutants
- Limited budget and infrastructure

Source: journalstar.com
Source: fiafoundation.org
Research Question

How should a signal control system be designed to balance the operational and environmental performance of signalized intersections?
Multi-objective signal control strategies:

- Operational objectives: capacity, vehicle delay, number of stops, queue length, safety [Zeng et al. (2010), Chen et al. (2011), Stevanovic et al. (2013)]
- Environmental objectives: fuel consumption, emissions or risk of human exposure to emissions [Li et al. (2004), Zhang et al. (2013), Stevanovic et al. (2015)]

Gaps:

- Only accounting for emissions of passenger cars
- Emission estimation mostly based on average speed and number of stops
- Fixed-time signal control
- Not accounting for person delay
Research Objective

- Develop a real-time bi-objective signal control system that minimizes a weighted combination of vehicle delay (or person delay) and emissions of auto and transit vehicles

- Present and provide insights into the trade-off between delay and emissions
Methodology: Assumptions

- Undersaturated traffic conditions
- Fixed cycle length, phase sequence, and yellow times
- Fixed and known capacity for each approach
- Mixed-use lanes for auto and transit vehicles
- Constant acceleration/deceleration rates
Methodology: Mathematical Model

Objective function:

\[
\text{Min } \lambda_d \left[\sum_{j=1}^{J} (D_{j,T} + \hat{D}_{j,T+1}) + \sum_{b=1}^{b_{\text{max}}} d_{b,T} \right] + \lambda_e \left[\sum_{j=1}^{J} (E_{j,T} + \hat{E}_{j,T+1}) + \sum_{b=1}^{b_{\text{max}}} e_{b,T} \right]
\]

- \(\lambda_d/\lambda_e \): weight of delay/emissions in the objective function (\(\lambda_d + \lambda_e = 1 \))
- \(D_{j,T}/E_{j,T} \): total auto delay/emissions of lane group \(j \) and cycle \(T \)
- \(\hat{D}_{j,T+1}/\hat{E}_{j,T+1} \): total auto delay/emissions of lane group \(j \) and cycle \(T+1 \)
- \(d_{b,T}/e_{b,T} \): delay/emissions of bus \(b \) in cycle \(T \)
- \(b_{\text{max}} \): number of buses in the optimization of cycle \(T \)
- \(J \): number of lane groups at the intersection
Methodology: Mathematical Model

Constraints:

- constant cycle length: \[\sum_{i=1}^{I} g_{i,T} + \sum_{i=1}^{I} y_{i} = C \]
- minimum green time for each phase: \[g_{i,T} \geq g_{i,min} \quad \forall i \in I \]
- maximum green time for each phase: \[g_{i,T} \leq g_{i,max} \quad \forall i \in I \]
- minimum green time for each lane group: \[G_{j}^{e}(g_{i,T}) \geq \frac{q_{j}}{s_{j}} C \quad \forall j \in J \]

C: cycle length
\(g_{i,T} \): green time of phase \(i \) in cycle \(T \)
\(y_{i} \): yellow time of phase \(i \)
\(g_{i,min} / g_{i,max} \): minimum/maximum duration of phase \(I \)
\(I \): number of phases
Methodology: Delay and Operation Times

\[N_{j,T}^q, N_{*,a}^j, \bar{N}_{j,T}^a, t_a, q_j, D_{j,T}, t_{*,a}^{j,T}, t_q^{j,T}, s_j, \bar{D}_{j,T+1} \]

Phases \(\tau_{j,T-1} \)

Cumulative Number of Vehicles

Time

Design Cycle, \(T \)

\(C \)

\(T-1 \)

\(T+1 \)
Methodology: Delay and Operation Times

Phases

$\tau_{j,T-1}$

$\tau_{j,T}$

$N_{j,T}^q$

$N_{j,T}^{*,b}$

Cumulative Number of Vehicles

Time

$T-1$

Design Cycle, T

$T+1$

Methodology: Delay and Operation Times
Methodology: Driving Cycle
Methodology: Auto Emission Rates

Emission rate estimation for gasoline cars [Frey et al. (2006)]:

\[VSP = v \times (0.22a + g \times \sin \phi + 0.059) + 1.2 \times 10^{-5} \times v^3 \]

Assumptions:
- \(\Phi \): link’s grade
- \(g \): standard gravity (9.81 m/s^2)
- free flow speed: \(v_f^a = 45 \text{ km/hr} = 12.5 \text{ m/s} \)
- acceleration rate: \(a_{acc} = 3 \text{ m/s}^2 \)
- deceleration rate: \(a_{dec} = 4 \text{ m/s}^2 \)

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>NOx [mg/s]</th>
<th>CO [mg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>7.7</td>
<td>178.3</td>
</tr>
<tr>
<td>Deceleration</td>
<td>0.9</td>
<td>7.6</td>
</tr>
<tr>
<td>Cruising</td>
<td>1.2</td>
<td>8.3</td>
</tr>
<tr>
<td>Idling</td>
<td>0.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Methodology: Transit Emission Rates

Emission rate estimation for diesel buses \[\text{[Zhai et al. (2008)]}:\]

\[
VSP = v \ast (a + g \ast sin\phi + 0.092) + 0.00021 \ast v^3
\]

Assumptions:

- Free flow speed: \(v_f^a = 45 \frac{km}{hr} = 12.5 \frac{m}{s} \)
- Acceleration rate: \(a_{acc} = 2 \frac{m}{s^2} \)
- Deceleration rate: \(a_{dec} = 2 \frac{m}{s^2} \)

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>NOx [mg/s]</th>
<th>CO [mg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>263.5</td>
<td>63.6</td>
</tr>
<tr>
<td>Deceleration</td>
<td>45.0</td>
<td>8.6</td>
</tr>
<tr>
<td>Cruising</td>
<td>133.3</td>
<td>37.1</td>
</tr>
<tr>
<td>Idling</td>
<td>45.0</td>
<td>8.6</td>
</tr>
</tbody>
</table>
Application: Considered Pollutants

- **Carbon Monoxide (CO):**
 - Detrimental effects on health
 - Interference with oxygen absorption by red blood cells
 - Automobiles contribute 85% of CO emissions in industrialized nations

- **Nitrogen Oxides (NO$_x$):**
 - Irritation of airways, especially lungs
 - Help the formation of other smog components such as ground-level ozone
 - Diesel buses are the primary source of NO$_x$ emissions
Application: Test Site

- $C = 120$ sec
- Intersection flow ratio during peak hour = 0.9
- 6-phase signal
Application: Evaluation Tests

- Two objective functions:
 - Minimize a weighted combination of vehicle delay and emissions
 - Minimize a weighted combination of person delay and emissions

- Intersection flow ratio*: 0.4, 0.6, 0.9

- Deterministic arrivals

- Known and constant auto arrival and passenger occupancy

- Auto passenger occupancy = 1.25 pax/veh

- Varying transit arrivals across the cycle

- Transit passenger occupancy = 30 pax/veh

- One or two transit arrivals in conflicting lane groups

- Pollutants: CO and NOx

*sum of flow ratios (v/s) for all critical lane groups
Results

Minimizing a weighted combination of vehicle delay and CO emissions when there is no transit vehicle at the intersection

- Higher rate of emission reduction for lower values of emission weighting factor
Results

Minimizing a weighted combination of vehicle delay and NO_x emissions when there is a transit vehicle in lane group 8

Intersection flow ratio = 0.4

- Providing priority to the bus to achieve significant emissions saving
- High emissions reduction at the price of low delay increase for very small λ_e

Intersection flow ratio = 0.9

- Lower flexibility of the system under higher traffic condition
- Steady rate of emissions reduction as delay increases
Results

Relationship between transit delay and NO_x emissions when there is a transit vehicle in lane group 8 when a combination of vehicle delay and NO_x emissions is minimized

- Linear trend between transit delay and NO_x emissions

Intersection flow ratio = 0.4
Results

Minimizing a weighted combination of vehicle delay and CO emissions when there is a transit vehicle in lane group 8

Intersection flow ratio = 0.4

- Lower trade-off between vehicle delay and CO emissions compared to the trade-off between vehicle delay and NOx emissions
- High rate of emission change for low λ_e
Results

Relationship between transit delay and CO emissions when there is a transit vehicle in lane group 8 and a combination of vehicle delay and CO emissions is minimized.

- Inverse relationship between transit delay and CO emissions

Intersection flow ratio = 0.4
Results

Minimizing a weighted combination of person delay and emissions when there is a transit vehicle in lane group 8 and the intersection flow ratio is 0.4

Minimizing person delay and NO_x emissions
- Lower change in NO_x emissions when in the objective function vehicle delay is replaced with person delay

Minimizing person delay and CO emissions
- Person delay objective is more conflicting with CO emissions than NO_x emissions
- High rate of emission change for a wide range of weights
Summary of Findings

- Two sets of objectives are highly conflicting:
 - Vehicle delay and NO_x emissions
 - Person delay and CO emissions

- The trade-off between delay and emissions depends on emission rates and vehicles’ passenger occupancy.

- The impact of optimized signal timings on the operation of transit vehicles depends on emission rates used and vehicles’ passenger occupancy.
Summary of Findings

- When there are more than one transit vehicles that are candidate to receive priority, the system has lower flexibility to adjust signal timings.

- The system has higher flexibility to adjust signal timings at low intersection flow ratios.

- Pareto Frontiers can help decision makers determine the best objective function based on their priorities.
Conclusions

- **Bi-objective signal control system:**
 - Flexible (person and vehicle delay; various types of pollutants)
 - Generic
 - Can accommodate conflicting transit routes
 - Computationally efficient
Future Work

- Account for oversaturated traffic conditions
- Optimized all signal settings including green times, phase sequence, and cycle length
- Extend the model to signalized arterials
References

QUESTIONS?

Farnoush Khalighi (farnoush.khalighi@aimsun.com)

Eleni Christofa (christofa@ecs.umass.edu)